914 resultados para Recycled steel fibre reinforced concrete


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Funding Financial support of this research by the Engineering and Physical Sciences Research Council (EPSRC/GR/L51348) and the British Ministry of Defence is gratefully acknowledged.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the effect of foam core density and skin type on the behaviour of sandwich panels as structural beams tested in four-point bending and axially compressed columns of varying slenderness and skin thickness. Bio-composite unidirectional flax fibre-reinforced polymer (FFRP) is compared to conventional glass-FRP (GFRP) as the skin material used in conjunction with three polyisocyanurate (PIR) foam cores with densities of 32, 64 and 96 kg/m3. Eighteen 1000 mm long flexural specimens were fabricated and tested to failure comparing the effects of foam core density between three-layer FFRP skinned and single-layer GFRP skinned panels. A total of 132 columns with slenderness ratios (kLe/r) ranging from 22 to 62 were fabricated with single-layer GFRP skins, and one-, three-, and five-layer FFRP skins for each of the three foam core densities. The columns were tested to failure in concentric axial compression using pinned-end conditions to compare the effects of each material type and panel height. All specimens had a foam core cross-section of 100x50 mm with 100 mm wide skins of equal thickness. In both flexural and axial loading, panels with skins comprised of three FFRP layers showed equivalent strength to those with a single GFRP layer for all slenderness ratios and core densities examined. Doubling the core density from 32 to 64 kg/m3 and tripling the density to 96 kg/m3 led to flexural strength increases of 82 and 213%, respectively. Both FFRP and GFRP columns showed a similar variety of failure modes related to slenderness. Low slenderness of 22-25 failed largely due to localized single skin buckling, while those with high slenderness of 51-61 failed primarily by global buckling followed by secondary skin buckling. Columns with intermediate slenderness experienced both localized and global failure modes. High density foam cores more commonly exhibited core shear failure. Doubling the core density of the columns resulted in peak axial load increases, across all slenderness ratios, of 73, 56, 72 and 71% for skins with one, three and five FFRP layers, and one GFRP layer, respectively. Tripling the core density resulted in respective peak load increases of 116, 130, 176 and 170%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon fibre reinforced polymers (CFRP) are increasingly being used in the aerospace, automotive and defence industry due to their high specific stiffness and good corrosion resistance. In a modern aircraft, 50-60% of its structure is made up of CFRP material while the remainder is mostly a combination of metallic alloys (typically aluminium or titanium alloys). Mechanical fastening (bolting or riveting) of CFRP and metallic components has thus created a pressing requirement of drilling several thousand holes per aircraft. Drilling of stacks in a single-shot not only saves time, but also ensures proper alignment when fasteners are inserted, achieving tighter geometric tolerances. However, this requirement poses formidable manufacturing challenges due to the fundamental differences in the material properties of CFRP and metals e.g. a drill bit entering into the stack encounters brittle and abrasive CFRP material as well as the plastic behaviour of the metallic alloy, making the drilling process highly non-linear.

Over the past few years substantial efforts have been made in this direction and majority of the research has tried to establish links between how the process parameters (feed, depth of cut, cutting speed), tooling (geometry, material and coating) and the wear of the cutting tool affect the hole quality. Similarly, multitudes of investigations have been conducted to determine the effects of non-traditional drilling methods (orbital, helical and vibration assisted drilling), cutting zone temperatures and efficiency of chip extraction on the hole quality and rate of tool wear during single shot drilling of CFRP/alloy stacks.

In a timely effort, this paper aims at reviewing the manufacturing challenges and barriers faced when drilling CFRP/alloy stacks and to summarise various factors influencing the drilling process while detailing the advances made in this fertile research area of single-shot drilling of stack materials. A survey of the key challenges associated with avoiding workpiece damage and the effect these challenges have on tool design and process optimisation is presented. An in depth critique of suitable hole making methods and their aptness for commercialisation follows. The paper concludes by summarising the future work required to achieve repeatable, high quality single shot drilled holes in CFRP/alloy stacks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reinforced concrete creep is a phenomenon of great importance. Despite being appointed as the main cause of several pathologies, its effects are yet considered in a simplified way by the structural designers. In addition to studying the phenomenon in reinforced concrete structures and its current account used in the structural analysis, this paper compares creep strains at simply supported reinforced concrete beams in analytical and in experimental forms with the finite element method (FEM) simulation results. The strains and deflections obtained through the analytical form were calculated with the Brazilian code NBR 6118 (2014) recommendations and the simplified method from CEB-FIP 90 and the experimental results were extracted from tests available in the literature. Finite element simulations are performed using ANSYS Workbench software, using its 3D SOLID 186 elements and the structure symmetry. Analyzes of convergence using 2D PLANE 183 elements are held as well. At the end, it is concluded that FEM analyses are quantitative and qualitative efficient for the estimation of this non-linearity and that the method utilized to obtain the creep coefficients values is sufficiently accurate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relatório de Estágio para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Edificações

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Estruturas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Devido às necessidades da indústria atual é cada vez mais importante a utilização de métodos de união de materiais distintos. A utilização de adesivos no processo de produção de materiais compósitos tem uma grande aplicação, uma vez que permite ligar os diferentes materiais e ainda reduzir significativamente o peso do conjunto. Este trabalho teve como principal objetivo aumentar a resistência à delaminação de materiais compósitos no sentido da espessura, concretamente dos plásticos reforçados com fibras de carbono (CFRP), através da utilização de placas da liga de alumínio 2024-T3. Este conceito é muito semelhante ao utilizado nos laminados por fibras e metal (LFM) para aumentar a sua resistência à delaminação. Pretendeu-se também a identificação da configuração da junta que apresenta melhores resultados, comparativamente à junta de referência composta apenas por CFRP. Inicialmente, produziram-se apenas juntas de CFRP que foram utilizadas como comparação com os laminados de fibras e metal. Com o objetivo de melhorar a adesão entre os CFRP e a liga de alumínio, foram realizados três tratamentos superficiais diferentes, nomeadamente a lixagem, a anodização e o ataque com ácido. Posteriormente, foram produzidas as juntas com as seguintes configurações: CFRP-AL-CFRP, CFRP-AL-CFRP-AL-CFRP e AL-CFRP-AL. A realização deste trabalho permitiu concluir que com a adição de placas de alumínio, se conseguiu um melhoramento da resistência à delaminação das fibras de carbono e ainda um aumento da resistência específica no sentido da sua espessura. A JSS com a configuração AL-CFRP-AL e com comprimento de sobreposição de 50 mm foi a configuração que apresentou uma força de rotura mais elevada, ou seja, uma maior resistência à delaminação, comparativamente à junta de referência e às restantes configurações em estudo. A falha coesiva verificada perto da interface da junta AL-CFRP-AL, pode ser devida ao elevado comprimento de sobreposição e às diferentes elasticidades do alumínio e do CFRP, o que naturalmente levou a elevadas tensões localizadas nas extremidades da junta. Os resultados demostraram que é possível aumentar a resistência transversal do compósito utilizando uma placa de alumínio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corrosive phenomenon on reinforced concrete structures is one of the most founded pathologies on the coastal area. With the objective to prevent the process development, or even, retard its beginning, it was studied the application of inorganic covering over concrete surfaces, after its cure, as well as, evaluate the efficiency of the covering applied on the concrete in reducing its porosity of concrete preventing the entrance of aggressive agents to preserve the integrity of the existing armor inside it, comparing the result obtained with the body-of-proof reference, that didn´t receive covering protection. On the concrete production it was used Portland Cement CP II 32, coarse aggregate, fine aggregate and water from the local distributive. Two types of covering were used, one resin based of silicon and solvent and other white cement based, selected sands and acrylic resin. The concrete mixture adopted was 1:1,5:2,5 (cement, fine aggregate, coarse aggregate) and 0.50 water/cement ratio. With the concrete on fresh state was made the experiment test to determinate the workability. On the hardened state was made the concrete resistance experiment, absorption of water and electrochemical experiments, through polarization curves. Also was held optical microscopy and Scanning Electron Microscopy experiments to analyze the layer of the covering applied to the concrete surface and the interface between the concrete and the layer. The obtained results shows that the covering applied to the concrete surface didn´t affect the resistance towards compression. On the absorption of water occurred a diminution of the percentage absorbed, improving the concrete development by making it more impermeable towards the entrance of aggressive agents. The electrochemical experiment results confirmed the water absorption results; the body-of-proof covered presented larger protection towards the development of corrosives process and retarded the evolution of the corrosive phenomenon

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the occurrence of diseases in the use of structural reinforcements in composites, with presentation of concrete blanket detachment, has been identified the need to evaluate the performance of concrete reinforced with glass fiber. This study aims to evaluate these concretes by means of testing methodologies, using concrete with low resistance with structural reinforcement for confinement by preimpregnated glass fiber and traditional fiberglass blanket. The first stage of work was the development of methodologies for analysis, opting for four types, such as the acoustic survey, strength to compressive, the pull-off and ultrasound. Next, tests were carried out using the four selected methodologies in 30 of proof-of-specimens by 5x10 cm, 15 were reinforced with the traditional fiberglass blanket with 5specimens exposed to test a marine environment of marine coastline of Natal-RN and 15 were reinforced with a pre-impregnated glass fiber blanket, as well as 5specimens exposed to a test environment of the marine coastline of Natal-RN. After conducting the acoustic survey, it has been verified a lack of delaminating and air bubbles in the samples, confirming the absence of gross shortcomings in the implementation of the ribs both the traditional fiberglass blanket and in the preimpregnated fiber glass blanket. After carrying out methods of pull-off and compressive strengthening test it was observed that the reinforced proof-bodies with pre-impregnated glass blanket showed maximum stresses higher than the traditional fiberglass blanket; consequently a greater grip with the formation of a smaller area of . fracture, unlike traditional glass mat, which showed lower maximum stresses, with a greater area of fracture. It was also found that the traditional fiberglass blanket presented detachment of blanket-concrete interface, unlike the pre-impregnated fiberglass blanket, which showed a better grip on the blanket-concrete interface. In the trial of ultrasound there was no presence of cracks in the blanket-concrete interface, yielding to both blankets good compactness of the concrete. At the end of this work, they were developed and proposed two methods of testing for evaluation of reinforced concrete structures with composites, for standardization, the acoustic survey and pull-off

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of active silica potentially improves the quality of concrete due to its high reactivity and pore refinement effect. The reactivity of silica is likely related to its charge density. Variations in surface charge alter the reactivity of the material consequently affecting the properties of concrete. The present study aimed at investigating variations in the charge density of silica as a function of acid treatments using nitric or phosphoric acid and different pH values (2.0, 4.0 and 6.0). Effects on concrete properties including slump, mechanical strength, permeability and chloride corrosion were evaluated. To that end, a statistical analysis was carried out and empirical models that correlate studied parameters (pH, acid and cement) with concrete properties were established. The quality of the models was tested by variance analysis. The results revealed that the addition of silica was efficiency in improving the properties of concrete, especially the electrochemical parameters. The addition of silica treated using nitric acid at pH = 4.0 displayed the best cement performance including highest strength, reduced permeability and lowest corrosion current