898 resultados para Reactive Oxygen Species. CAT. Malate Synthase. Isocitrate Lyase. Functional Transition. Inhibition. 3-AT
Resumo:
Riboflavin is a vitamin very important in aerobic organisms, as a precursor of many coenzymes involved in the electron transporter chain. However, after photosensitization of riboflavin with UV or visible light, it generates reactive oxygen species (ROS), which can oxidize the DNA. The repair of oxidative lesions on DNA occurs through the base excision repair pathway (BER), where APE1 endonuclease plays a central role. On the other hand, the nucleotide excision repair pathway (NER) repairs helix-distorting lesions. Recently, it was described the participation of NERproteins in the repair of oxidative damage and in stimulation of repair function fromAPE1. The aim of this research was to evaluate the cytotoxic effects of photosensitized riboflavin (RF*) in cells proficient and deficient in NER, correlating with APE1 expression. For this propose, the cells were treated with RF* and it was performed the cell viability assay, extraction of whole proteins, cells fractionation, immunoblotting, indirect immunofluorescence and analysis of polymorphisms of BER gens. The results evidenced that cells deficient in XPA and CSB proteins were more sensitive to RF*. However, XPC-deficient cells presented similar resistance to MRC5- SV cells, which is proficient in NER. These results indicate that XPA and CSB proteins have an important role on repair of oxidative lesions induced by RF*. Additionally, it was evidenced that single nucleotide polymorphisms (SNPs) in BER enzymes may influence in sensitivity of NER-deficient cell lines. Concerning the APE1 expression, the results showed that expression of this protein after treatment with RF* only changed in XPC-deficient cells. Though, it was observed that APE1 is recruited and is bound to chromatin in MRC5-SV and XPA cells after treatment with RF*. The results also showed the induction of DNA damage after treatment with RF*, through the analysis of-H2AX, since the treatment promoted an increase of endogenous levels of this phosphorylated protein, which acts signaling double strand-break on DNA. On the other hand, in XPC-deficient cells, regardless of resistance of RF*, the endogenous levels of APE1 are extremely reduced when compared with other cell lines and APE1 is not bound to chromatin after treatment with RF*. These results conclude that RF* was able to induce cell death in NERdeficient cells, where XPA and CSB cells were more sensitive when compared with MRC5-SV and XPC-deficient cells. This last result is potentially very interesting, since XPC-deficient cell line presents low levels of APE1. Additionally, the results evidenced that APE1 protein can be involved in the repair of oxidative damage induced by RF*, because APE1 is recruited and bound strongly to chromatin after treatment.
Resumo:
Reactive oxygen species (ROS) are continuously generated and can be derived from cellular metabolism or induced by exogenous factors, in addition, have the capacity to damage molecules like DNA and proteins. BER is considered the main route of DNA damage oxidative repair, however, several studies have demonstrated the importance of the proteins participation of other ways to correct these injuries. NER enzymes deficiency, such as CSB and XPC, acting in the damage recognition step in the two subways this system influences the effectiveness of oxidative damage repair. However, the mechanisms by which cells deficient in these enzymes respond to oxidative stress and its consequences still need to be better understood. Thus, the aim of this study was to perform a proteomic analysis of cell lines proficient and deficient in NER, exposed to oxidative stress, in order to identify proteins involved, directly or not, in response to oxidative stress and DNA repair. For this, three strains of human fibroblasts, MRC5-SV, CS1AN (CSBdeficient) and XP4PA (XPC-deficient) were treated with photosensitized riboflavin and then carried out the differentially expressed proteins identification by mass spectrometry. From the results, it was observed in MRC5-SV increase expression in most of the proteins involved in cellular defense, an expected response to a normal cell line subjected to stress. CS1AN showed a response disjointed, it is not possible to establish many interactions between the proteins identified, may be one explanation for their sensitivity to treatment with riboflavin and other oxidants and increased cell death probably by induction of pro-apoptotic pathways. Already XP4PA showed higher expression of apoptosis-blocking proteins, as there was inhibition or reduced expression of others involved with the activation of this process, suggesting the activation of an anti-apoptotic mechanism in this lineage, which may help explain the high susceptibility to develop cancers in XPC individuals. These results also contribute to elucidate action mechanisms of NER in oxidative damage and the understanding of important routes in the oxidative stress correlation, repair and malignant tumors formation
Resumo:
The decoction of Brazilian pepper tree barks (Schinus terebinthifolius, Raddi), is used in medicine as wound healing and antiinflamatory. Once extracts from this plant are used for acceleration of scar s process, it is important to study their mutagenic and genotoxic potential. In previous works in our laboratory, it was observed mutagenicity caused by the decoction when in high concentrations. Among the chemical compounds of this plant that could be able to induce mutation, the flavonoids were the only group that was referred to have either an oxidant or antioxidant potential. The flavonoids were isolated, purified and quantified by adsorptive column chromatography under silica gel, bacterial and in vitro genotoxic tests were realized to determine if the flavonoids were the responsible agents for this mutagenicity found. The tests realized with plasmidial DNA were indicative that the flavonoids are probably genotoxic, due to the presence of correlation between increase of the flavonoid concentration and in plasmidial DNA double strand breakage visualized in agarose gel, as well as they were capable to generated abasic sites shown by the in vitro treatment with exonuclease III. The same tests with plasmidial DNA in the presence of copper [10 µM] and of a Tris-HCl pH 7.5 [10 µM] buffer were realized with the isolated flavonoids to determine if there would be or not participation of reactive oxygen species (ROS). The transformation of plasmidial DNA in different bacterial strains proficient and deficient in DNA repair enzymes in the presence or not of a Tris-HCl buffer, suggests that the enzymes that repair oxidative lesions are necessary to repair the lesions generated by the flavonoids and that ROS are generated and are necessary to promote the lesions. Bacterial tests with Escherichia coli strains of the CC collection (deficient or not for DNA repair enzymes), showed that the flavonoids are able to increase the frequency of mutations, mainly in strains mutated in repair enzymes (MutM, MutY-glicosylases and double mutant), suggesting that these agents are responsible for the enhancement in the mutation rate. In order to determine the mutation spectrum caused by the flavonoids of the Brazilian pepper tree stem bark, plasmidial DNA previously treated with the flavonoids were transformed in bacterial strains deficient and proficient in the DNA repair enzymes, followed by a blue-white selection with X-gal, DNA amplification by PCR and sequencing the positive mutant clones. Analysis of the mutants obtained from strains CC104, CC104mutM, CC104mutY, CC104mutMmutY, BW9101, BW9109 indicated a predominance of some mutations like G:C to C:G that can be correlated with the origin of 8-oxoG, due to oxidative lesions caused by the flavonoids. So it can concluded that the flavonoid isolated or in fractions enriched on them are genotoxic and mutagenic, and their mutations are predominantly oxidative, mediated by ROS, and the lesions are recognized by the BER system. In this way it is proposed that the flavonoids can act in two different ways to generate the DNA lesion: 1. in a Fenton-like reaction, when the flavonoid are in the presence of metal ions and that together with the water generate ROS that promotes the DNA lesions; 2. in another way the lesions can be generated by the formation of ROS due to the internal chemical structure of the flavonoid molecule due to the quantity and location of hydroxyl groups, and so producing the DNA lesions, those lesions can be directly (suggested by the in vitro experiments) or indirectly done (supported by the experiments using the CC bacterial strains)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aim: The aim of this work was to investigate the hypothesis that catechol and 3MC inhibit FADH2-linked basal respiration in mitochondria isolated from rat liver and brain homogenates. Moreover, catechol ability to induce DNA damage in rat brain cells through the comet assay (alkaline single-cell gel electrophoresis assay) was also observed. Methods: Two different catechols were evaluated: pirocatechol (derived from benzene) and 3-methylcatechol (derived from toluene); rat liver and brain homogenates were incubated with 1mM catechol at pH 7.4 for up to 30 minutes. After that, mitochondrial fractions were isolated by differential centrifugation. Basal oxygen uptake was measured using a Clark-type electrode after the addition of 10 mM sodium succinate for a period of 12 minutes. In additional experiments, rat brain cells were treated with 1, 5 and 10mM pirocatechol for up to 20 minutes at 37º C, and submitted to electrophoresis. Results: Catechols (pirocatechol and 3methylcatechol) induced a time-dependent partial inhibition of FADH2-linked basal mitochondrial respiration. Indeed, pirocatechol was able to produce a dosedependent DNA oxidative damage in rat brain cells by 2 and 4 injury levels. These results suggest that reactive oxygen species generated by the oxidation of catechols, induced an impairment on mitochondrial respiration and a DNA damage, which might be related to their citotoxicity. Conclusion: Catechols produced an inhibition of basal respiration associated to FADH2 in isolated liver and brain mitochondria; 3-methylcatechol, at the same concentration, produced similar toxicity in the mitochondrial model. Indeed, pirocatechol induced a DNA damage in rat brain cells, mainly observed in comets formation and consequent DNA degradation
Resumo:
OBJECTIVE: The aim of this work was to analyse some oxidative stress parameters in patients of Systemic Lúpus Erythematosus. PATIENTS AND METHODS: Determinations of reduced glutathione content in whole blood were carried out. The activity of superoxide dismutase, gluthatione peroxidase and catalase in erythrocytes and the concentration of reactive substances of acid thiobarbituric in plasma of patients female (n =19) with SLE no activity of disease (Mex-SLEDAI < 2), with average ages of 32 ± 11 years, through the spectrophotometrical methods and from healthy individuals (n =30). Statistical data were analyzed by student t-test, p<0,05. RESULTS: Our data indicated a significant decrease on the activity of catalase and significant increase on the concentration of reactive substances of acid thiobarbituric in patients with SLE comparing with healthy individuals. There was no significant difference in other parameters. CONCLUSION: The results showed that oxidative stress has a role in the pathogenesis of the disease in SLE, even in patients without active disease.
Resumo:
Studies report that the pathophysiological mechanism of diabetes complications is associated with increased production of Reactive Oxygen Species (ROS)-induced by hyperglycemia and changes in the capacity the antioxidant defense system. In this sense, the aim of this study was to evaluate changes in the capacity of antioxidant defense system, by evaluating antioxidant status, gene expression and polymorphisms in the genes of GPx1, SOD1 and SOD2 in children, adolescents and young adults with type 1 diabetes. We studied 101 individuals with type 1 diabetes (T1D) and 106 normoglycemic individuals (NG) aged between 6 and 20 years. Individuals with type 1 diabetes were evaluated as a whole group and subdivided according to glycemic control in DM1G good glycemic control and DM1P poor glycemic control. Glycemic and metabolic control was evaluate by serum glucose, glycated hemoglobin, triglycerides, total cholesterol and fractions (HDL and LDL). Renal function was assessed by measurement of serum urea and creatinine and albumin-to-creatinine ratio (ACR) in spot urine. Antioxidant status was evaluate by content of reduced glutathione (GSH) in whole blood and the activity of erythrocyte enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD). We also analyzed gene expression and gene polymorphisms of GPx1 (rs1050450), SOD1 (rs17881135) and SOD2 (rs4880) by the technique of real-time PCR (Taqman®). Most individuals with DM1 (70.3%) had poor glycemic control (glycated hemoglobin> 8%). Regarding the lipid profile, individuals with type 1 diabetes had significantly elevated total cholesterol (p <0.001) and LDL (p <0.000) compared to NG; for triglycerides only DM1NC group showed significant increase compared to NG. There was an increase in serum urea and RAC of individuals with DM1 compared to NG. Nine individuals with type 1 diabetes showed microalbuminuria (ACR> 30 mg / mg). There was a decrease in GSH content (p = 0.006) and increased erythrocyte GPx activity (p <0.001) and SOD (p <0.001) in DM1 group compared to NG. There was no significant difference in the expression of GPx1 (p = 0.305), SOD1 (.365) and SOD2 (0.385) between NG and DM1. The allele and genotype frequencies of the polymorphisms studied showed no statistically significant difference between the groups DM1 and NG. However, the GPx1 polymorphism showed the influence of erythrocyte enzyme activity. There was a decrease in GPx activity in individuals with type 1 diabetes who had a polymorphic variant T (p = 0.012). DM1 patients with the polymorphic variant G (AG + GG) for polymorphism of SOD2 (rs4880) showed an increase in the RAC (p <0.05). The combined data suggest that glucose control seems to be the predominant factor for the emergence of changes in lipid profile, renal function and antioxidant system, but the presence of the polymorphisms studied may partly contribute to the onset of complications
Resumo:
Licania rigida Benth., Licania tomentosa (Benth.) Fritsch, and Couepia impressa Prance (Chrysobalanaceae family) plants have long been used medicinally by the people from Northeastern Brazil. Crude extracts and infusions of these plants have been applied in the treatment of several conditions such as diabetes and rheumatism, degenerative diseases with involvement of reactive oxygen species (ROS). The aim of this study was to evaluate the aqueous, ethanolic, and hydroethanolic leaves extracts antioxidant capacity of these species, using several in vitro assay systems (reducing power, DPPH● scavenging, the β-carotene linoleate model system and lipid peroxidation inhibition in rat brain homogenate, using thiobarbituric acid reactive substances - TBARS). The oral acute toxicity of aqueous extracts was also evaluated in vivo. Results revealed that these extracts possess a potent reducing power and DPPH scavenging ability, as well as the ability to prevent TBARS formation in rat brain homogenate in a concentration-dependent manner. Regarding in vivo oral acute toxicity of the aqueous species extracts, no toxic effects were observed upon evaluating physiological, hematological and biochemical parameters. The presence of high levels of phenolics and flavonoids was determined mainly in the ethanol extract. However, the C. impressa hydroethanolic extract, fractionated with hexane, chloroform and ethyl acetate for analysis by NMR 1H, showed more efficient results than the reference antioxidant Carduus marianus. The classes of organics compounds were determined were phenolics in the fraction of ethyl acetate and terpenes in chloroform and hexane fractions. The ethil acetate fraction had the highest content of flavonoids and increased scavenging capacity of DPPH●, possibly by the presence of phenolic compounds. Therefore, a detailed investigation of the phytochemical composition and in vivo study of the C. impressa hydroethanolic extract is suggested to characterize the active compounds of the species
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
As lesões musculares têm sido observadas como as mais frequentes nos esportes. Considerando a produção de espécies reativas de oxigênio como um fator de risco para instalação de lesões e características antioxidantes e anti-inflamatórias do ômega-3, o objetivo deste trabalho foi verificar as alterações histológicas e morfométricas do músculo sóleo de ratos que realizaram natação, associado a uma dieta suplementada com ômega-3. Para sua realização foram utilizados 31 ratos Wistar divididos em quatro grupos, sendo os grupos A e C suplementados com azeite de oliva e B e D com 3g/dia de ômega-3 por quatro semanas. Os grupos C e D foram submetidos à natação cinco dias/semana por 28 dias, com acréscimo de 5% do peso corporal a partir da segunda semana, enquanto que os grupos A e B não realizaram treinamento. Após este período os animais foram sacrificados, o músculo sóleo retirado e corado com Hematoxilina-eosina para avaliação morfológica. Análise de variância bifatorial, com nível de significância de 5%, foi utilizada para análise dos valores do menor diâmetro das fibras musculares. Os grupos A e B (sedentários) apresentaram padrões histológicos de normalidade. O grupo C apresentou aumento do tecido endomisial e do número de núcleos, presença de fibras fagocitadas e de contornos poligonais não mantidos, enquanto que o grupo D apresentou poucas fibras fagocitadas e de contornos poligonais preservados. Com relação à medida do menor diâmetro das fibras musculares, as análises mostraram diferenças para o fator treinamento, mas não para o fator suplementação e a interação entre eles. As alterações histológicas induzidas pelo exercício foram atenuadas no grupo suplementado com ômega-3, sugerindo um efeito protetor da suplementação, contudo, o aumento do diâmetro das fibras para os grupos expostos ao exercício está relacionado ao efeito do treinamento e não à suplementação.
Resumo:
There is abundant evidence that reactive oxygen species are implicated in several physiological and pathological processes. To protect biological targets from oxidative damage. antioxidants must react with radicals and other reactive species faster than biological substrates do. The aim of the present study was to determine the in vitro antioxidant activity of aqueous extracts from leaves of Bauhinia forficata Link (Fabaceae - Caesalpinioideae) and Cissus sicyoides L. (Vitaceae) (two medicinal plants used popularly in the control of diabetes mellitus), using several different assay systems, namely, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) decolorization. superoxide anion radical (O-2 center dot-) scavenging and myeloperoxidase (MPO) activity. In the ABTS assay for total antioxidant activity, B. forficata showed IC50 8.00 +/- 0.07 mu g/mL, while C. sicyoides showed IC50 13.0 +/- 0.2 mu g/mL. However, the extract of C. sicyoides had a stronger effect on O-2 center dot- (IC50 60.0 +/- 2.3 mu p/mL) than the extract of B. forficata (IC50 90.0 +/- 4.4 mu g/mL). B. forficata also had a stronger inhibitory effect on MPO activity, as measured by guaiacol oxidation, than C. sicyoides. These results indicate that aqueous extracts of leaves of B. forficata and C. sicyoides are a potential source of natural antioxidants and may be helpful in the prevention of diabetic complications associated with oxidative stress.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ethnopharmacological relevance: The species Qualea grandiflora and Qualea multiflora, which belong to the Vochysiaceae family, are common in the Brazilian savannah (Cerrado biome), and the local inhabitants use these species to treat external ulcers and gastric diseases and as an anti-inflammatory agent. Studies have demonstrated that these plants contain compounds that exhibit pharmacological activities; however, the risks associated with their consumption are not known.Material and methods: In the present study, the mutagenicity of polar and apolar extracts from Qualea grandiflora and Qualea multiflora were assessed by employing the Ames assay with and without metabolic activation. Additionally, phytochemical analyses (HPLC-ESI-IT-MS, HPLC-UV-PDA and GC-IT-MS) were performed to identify the chemical constituents present in these species, including the evaluation of physico-chemical properties, such as polarity or apolarity of the organic compounds, which are related to each fraction obtained. These studies provide important information regarding the biochemical behaviour of these compounds.Results: All extracts exhibited mutagenicity, inducing frameshift mutations and base substitutions in DNA. Phytochemical analysis identified terpenes, ellagic acid derivatives and phytosteroids.Conclusions: The mutagenicity observed might be due to the presence of pentacyclic triterpenes and polyphenols, which are able to generate reactive oxygen species (ROS) and result in the potential to cause DNA damage. The genetic risk identified in this present work shows that special attention should be considered for the use of compounds obtained from these plant species in medicinal treatments. Further studies must be conducted to identify safe therapeutic doses. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Activated phagocytes oxidize the hormone melatonin to N-1-acethyl-N-2-formyl-5-methoxykynuramine (AFMK) in a superoxide anion- and myeloperoxidase-dependent reaction. We examined the effect of melatonin, AFMK and its deformylated-product N-acetyl-5-methoxykynuramine (AMK) on the phagocytosis, the microbicidal activity and the production of hypochlorous acid by neutrophils. Neither neutrophil and bacteria viability nor phagocytosis were affected by melatonin, AFMK or AMK. However these compounds affected the killing of Staphylococcus aureus. After 60 min of incubation, the percentage of viable bacteria inside the neutrophil increased to 76% in the presence of 1 mM of melatonin, 34% in the presence of AFMK and 73% in the presence of AMK. The sole inhibition of HOCl formation, expected in the presence of myeloperoxidase substrates, was not sufficient to explain the inhibition of the killing activity. Melatonin caused an almost complete inhibition of HOCl formation at concentrations of up to 0.05 mM. Although less effective, AMK also inhibited the formation of HOCl However, AFMK had no effect on the production of HOCl These findings corroborate the present view that the killing activity of neutrophils is a complex phenomenon, which involves more than just the production of reactive oxygen species. Furthermore, the action of melatonin and its oxidation products include additional activities beyond their antioxidant property. The impairment of the neutrophils' microbicidal activity caused by melatonin and its oxidation products may have important clinical implications, especially in those cases in which melatonin is pharmacologically administered in patients with infections. (c) 2005 Elsevier SAS. All rights reserved.