969 resultados para Rayleigh scattering
Resumo:
The liquid structure of 1-methyl-4-cyanopyridinium bis {(trifluoromethyl)sulfonyl}imide, a prototypical ionic liquid containing an electron-withdrawing group on the cation, has been investigated at 368 K. Experimental neutron scattering combined with empirical potential structure refinement analysis of the data and classical molecular dynamics simulations have been used to probe the liquid structure in detail. Both techniques generated highly consistent results that provide valuable validation of the force fields and refinement approaches. A significant degree of apparent charge ordering is found in the liquid structure, although the nonspherical shape of the ions results in interpenetration of cations into the first shell of adjacent cations, with much shorter closest contact distances than the averaged center-of-mass cation-cation and cation-anion separations.
Resumo:
Rapid, quantitative SERS analysis of nicotine at ppm/ppb levels has been carried out using stable and inexpensive polymer-encapsulated Ag nanoparticles (gel-colls). The strongest nicotine band (1030 cm(-1)) was measured against d(5)-pyridine internal standard (974 cm(-1)) which was introduced during preparation of the stock gel-colls. Calibration plots of I-nic/I-pyr against the concentration of nicotine were non-linear but plotting I-nic/I-pyr against [nicotine](x) (x = 0.6-0.75, depending on the exact experimental conditions) gave linear calibrations over the range (0.1-10 ppm) with R-2 typically ca. 0.998. The RMS prediction error was found to be 0.10 ppm when the gel-colls were used for quantitative determination of unknown nicotine samples in 1-5 ppm level. The main advantages of the method are that the gel-colls constitute a highly stable and reproducible SERS medium that allows high throughput (50 sample h(-1)) measurements.
Resumo:
Incoherent Thomson scattering (ITS) provides a nonintrusive diagnostic for the determination of one-dimensional (1D) electron velocity distribution in plasmas. When the ITS spectrum is Gaussian its interpretation as a three-dimensional (3D) Maxwellian velocity distribution is straightforward. For more complex ITS line shapes derivation of the corresponding 3D velocity distribution and electron energy probability distribution function is more difficult. This article reviews current techniques and proposes an approach to making the transformation between a 1D velocity distribution and the corresponding 3D energy distribution. Previous approaches have either transformed the ITS spectra directly from a 1D distribution to a 3D or fitted two Gaussians assuming a Maxwellian or bi-Maxwellian distribution. Here, the measured ITS spectrum transformed into a 1D velocity distribution and the probability of finding a particle with speed within 0 and given value v is calculated. The differentiation of this probability function is shown to be the normalized electron velocity distribution function. (C) 2003 American Institute of Physics.
Resumo:
One of the grand challenges of contemporary physics is understanding strongly interacting quantum systems comprising such diverse examples as ultracold atoms in traps, electrons in high-temperature superconductors and nuclear matter. Warm dense matter, defined by temperatures of a few electron volts and densities comparable with solids, is a complex state of such interacting matter. Moreover, the study of warm dense matter states has practical applications for controlled thermonuclear fusion, where it is encountered during the implosion phase, and it also represents laboratory analogues of astrophysical environments found in the core of planets and the crusts of old stars, Here we demonstrate how warm dense matter states can be diagnosed and structural properties can be obtained by inelastic X-ray scattering measurements on a compressed lithium sample. Combining experiments and ab initio simulations enables us to determine its microscopic state and to evaluate more approximate theoretical models for the ionic structure.
Resumo:
We have performed short-pulse x-ray scattering measurements on laser-driven shock-compressed plastic samples in the warm dense matter regime, providing instantaneous snapshots of the system evolution. Time-resolved and angularly resolved scattered spectra sensitive to the correlation effects in the plasma show the appearance of short-range order within a few interionic separations. Comparison with radiation-hydrodynamic simulations indicates that the shocked plastic is compressed with a temperature of a few electron volts. These results are important for the understanding of the thermodynamic behavior of strongly correlated matter for conditions relevant to both laboratory astrophysics and inertial confinement fusion research.
Resumo:
This paper compares the structure of 1-alkyl-3-methylim ridazolium salts using SAXS and X-ray reflectivity. A range of anions have been investigated namely chloride, bromide, trifluoromethanesulfonate (OTf), bis(trifluoromethanesulfonyl)imide (TFI) and tetrachloropalladate(II) with cation alkyl chains ranging from n = 12-20. In general, the salts show liquid crystalline behaviour whose structure is still observed on melting into an isotropic liquid.
Resumo:
A Thomson scattering system has been installed at the Tokyo electron beam ion trap for probing characteristics of the electron beam. A YVO4 green laser beam was injected antiparallel to the electron beam. The image of the Thomson scattering light from the electron beam has been observed using a charged-coupled device camera. By using a combination of interference filters, the spectral distribution of the Thomson scattering light has been measured. The Doppler shift observed for the scattered light is consistent with the beam energy. The beam radius dependence was investigated as a function of the beam energy, the beam current, and the magnetic field at the trap region. The variation of the measured beam radius against the beam current and the magnetic field were similar to those in Herrmann's prediction. The beam radius as a function of the beam energy was also similar to Herrmann's prediction but seemed to become larger at low energy. (C) 2002 American Institute of Physics.
Resumo:
We investigate the time evolution of entanglement in a process where a mobile particle is scattered by static spins. We show that entanglement increases monotonically during a transient and then saturates to a steady-state value. For a quasimonochromatic mobile particle, the transient time depends only on the group velocity and width of the incoming wave packet and is insensitive to the interaction strength and spin number of the scattering particles. These features do not depend on the interaction model and can be seen in various physical settings.
Resumo:
We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.