934 resultados para Random Scission
Resumo:
Delineating brain tumor boundaries from magnetic resonance images is an essential task for the analysis of brain cancer. We propose a fully automatic method for brain tissue segmentation, which combines Support Vector Machine classification using multispectral intensities and textures with subsequent hierarchical regularization based on Conditional Random Fields. The CRF regularization introduces spatial constraints to the powerful SVM classification, which assumes voxels to be independent from their neighbors. The approach first separates healthy and tumor tissue before both regions are subclassified into cerebrospinal fluid, white matter, gray matter and necrotic, active, edema region respectively in a novel hierarchical way. The hierarchical approach adds robustness and speed by allowing to apply different levels of regularization at different stages. The method is fast and tailored to standard clinical acquisition protocols. It was assessed on 10 multispectral patient datasets with results outperforming previous methods in terms of segmentation detail and computation times.
Resumo:
We present an automatic method to segment brain tissues from volumetric MRI brain tumor images. The method is based on non-rigid registration of an average atlas in combination with a biomechanically justified tumor growth model to simulate soft-tissue deformations caused by the tumor mass-effect. The tumor growth model, which is formulated as a mesh-free Markov Random Field energy minimization problem, ensures correspondence between the atlas and the patient image, prior to the registration step. The method is non-parametric, simple and fast compared to other approaches while maintaining similar accuracy. It has been evaluated qualitatively and quantitatively with promising results on eight datasets comprising simulated images and real patient data.
Resumo:
We use a conceptual model to investigate how randomly varying building heights within a city affect the atmospheric drag forces and the aerodynamic roughness length of the city. The model is based on the assumptions regarding wake spreading and mutual sheltering effects proposed by Raupach (Boundary-Layer Meteorol 60:375-395, 1992). It is applied both to canopies having uniform building heights and to those having the same building density and mean height, but with variability about the mean. For each simulated urban area, a correction is determined, due to height variability, to the shear stress predicted for the uniform building height case. It is found that u (*)/u (*R) , where u (*) is the friction velocity and u (*R) is the friction velocity from the uniform building height case, is expressed well as an algebraic function of lambda and sigma (h) /h (m) , where lambda is the frontal area index, sigma (h) is the standard deviation of the building height, and h (m) is the mean building height. The simulations also resulted in a simple algebraic relation for z (0)/z (0R) as a function of lambda and sigma (h) /h (m) , where z (0) is the aerodynamic roughness length and z (0R) is z (0) found from the original Raupach formulation for a uniform canopy. Model results are in keeping with those of several previous studies.
Resumo:
The goal of this study was to evaluate in vitro and in vivo the effects of up-regulation of the proangiogenic hypoxia inducible factor (HIF)-1α induced by dimethyloxalylglycine on endothelial cell cultures and on skin flap survival.
Resumo:
Whether the use of mobile phones is a risk factor for brain tumors in adolescents is currently being studied. Case--control studies investigating this possible relationship are prone to recall error and selection bias. We assessed the potential impact of random and systematic recall error and selection bias on odds ratios (ORs) by performing simulations based on real data from an ongoing case--control study of mobile phones and brain tumor risk in children and adolescents (CEFALO study). Simulations were conducted for two mobile phone exposure categories: regular and heavy use. Our choice of levels of recall error was guided by a validation study that compared objective network operator data with the self-reported amount of mobile phone use in CEFALO. In our validation study, cases overestimated their number of calls by 9% on average and controls by 34%. Cases also overestimated their duration of calls by 52% on average and controls by 163%. The participation rates in CEFALO were 83% for cases and 71% for controls. In a variety of scenarios, the combined impact of recall error and selection bias on the estimated ORs was complex. These simulations are useful for the interpretation of previous case-control studies on brain tumor and mobile phone use in adults as well as for the interpretation of future studies on adolescents.