996 resultados para Radioterapia - Tecnica
Resumo:
Most cancer types are treated by antineoplastic chemotherapy, which can be performed conjointly with other treatments, such as radiotherapy and surgery. Due to its action, chemotherapy provides the possibility of cure, but it also leads to a number of adverse effects, such as myelosuppression, cutaneous and gastrointestinal toxicity, etc. Patients undergoing chemotherapy must receive constant information concerning how to prevent or minimize these effects in order to achieve better quality of life and, consequently, a more successful treatment. Hence, this study aimed at investigating the need and preference for different forms of information by oncologic patients submitted to chemotherapy. It is a cross-sectional, descriptive and quantitative study conducted at the chemotherapy division of the Botucatu School of Medicine University Hospital/SP on a sample of 50 patients older than 18 years. After previous knowledge of the study and formalization of Free Consent, the individuals answered a questionnaire containing 12 questions related to the importance attributed to the information received, from which professional and when to receive it. Data were analyzed by Fisher’s exact test and showed that 62% of the patients were females, and the remaining 38% were males of whom 46% were older than 60 years, 26% were from 50 to 60 years old, 24% from 30 to 50, and only 4% were younger than 30 years old. The patients had lymphatic (23.4%) and solid (76.6%) tumors. All the respondents reported that receiving information about the disease and its treatment was extremely important. As regards information related to side effects, 98% of patients answered that receiving it was extremely important, and only 2% answered that it was little important. Correlations were made between age, gender, and tumor type with the answers obtained for the best moment, how and from whom to receive such informatio... (Complete abstract click electronic access below)
Resumo:
Due the differences between interaction physics process with matter for protons and photons, the proton beam tomography (pCT) has some vantages to comparison with conventional tomography. Also it is confirmed that usually pCT has better dose distribution and highest contrast resolution. The pCT allow not only view the internal structure of an object without destroying it, but also directly measure of volume density of electrons. Also it is confirmed that usually pCT has better dose distribution and highest contrast resolution. At the same time, there are many scientific and technical aspects to a detailed study: the capacity and limitations of the pCT methods are not well clarified. Through computations, based on Monte Carlo Method was carried out a detailed study of the contribution of non-elastic nuclear spreading, and together was compared with an analytical model for the deflection angle and the lateral deflection of protons in the target volume. The programs used were SRIM 2006 code and MCNPX v.2.50 code
Resumo:
O câncer colorretal (CCR) é a terceira causa mais comum de câncer no mundo em ambos os sexos e a segunda causa em países desenvolvidos. Seu tratamento convencional é baseado na cirurgia associada à radioterapia e à quimioterapia em dose máxima tolerável, para tentativa de eliminação massiva das células tumorais. Tal abordagem, no entanto, pode causar efeitos colaterais importantes, entre eles as alterações hematopoiéticas e a supressão da resposta imune. As vacinas de células dendríticas mostram-se como opção terapêutica promissora para muitos tipos de câncer, havendo diferentes protocolos de preparação e sensibilização dessas células para dirigir a resposta antitumoral específica. Alguns agentes antineoplásicos em doses ultrabaixas mostraram modular positivamente as células dendríticas (DCs) e, na célula tumoral, promover alterações na transcrição de vários genes imunologicamente relevantes. Considerando que, em estudos prévios, tais mudanças transcricionais resultaram em aumento de imunogenicidade das células tumorais, hipotetizamos que o RNA das células pré-tratadas deve ser mais eficiente do que o RNA das células originais para preparação de vacinas de células dendríticas. Assim, objetivamos avaliar se o tratamento de células do tumor de cólon humano (HT-29) com PAC ou 5-FU/LEUCO torna seu RNA mais eficiente para preparação dessas vacinas. Para essa investigação, DCs humanas geradas a partir de monócitos de sangue periférico foram transfectadas com RNA total das células tumorais pré-tratadas e, a seguir, testadas quanto à capacidade de apresentação de antígenos e indução de células T citolíticas específicas. Apesar da baixa viabilidade celular pós eletroporação, os resultados obtidos sugerem que o tratamento de células tumorais com concentrações não tóxicas de 5-FU ou PAC promove alteração de expressão... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
Osteosarcoma is the most common primary bone cancer in dogs. It affects most commonly dogs of big or giant breeds with 7 to 8 years and the etiology is unknown. Osteosarcoma is defined as a bone matrix-producing malignant mesenchymal tumor and has a predilection for the metaphyseal region of appendicular skeleton, however, it can affect axial skeleton and soft tissues. Distal radius is the most commonly affected site. The definitive diagnosis of osteosarcoma can be obtained with history, physical examination, radiographs and biopsy. Lung is the most common organ for metastatic disease. The mainly treatment for osteosarcoma is limb amputation and systemic chemotherapy for metastatic disease control. Limb-sparing surgery is a viable alternative to amputation for dogs with concomitant conditions that impede limb amputation. Palliative treatments for osteosarcoma have been studied such as local and systemic radiotherapy, immunotherapy and biphosphonates. This study has the objective of presenting the aspects of diagnosis and treatment for appendicular osteosarcoma
Resumo:
In radiotherapy, computational systems are used for radiation dose determination in the treatment’s volume and radiometric parameters quality analysis of equipment and field irradiated. Due to the increasing technological advancement, several research has been performed in brachytherapy for different computational algorithms development which may be incorporated to treatment planning systems, providing greater accuracy and confidence in the dose calculation. Informatics and information technology fields undergo constant updating and refinement, allowing the use Monte Carlo Method to simulate brachytherapy source dose distribution. The methodology formalization employed to dosimetric analysis is based mainly in the American Association of Physicists in Medicine (AAPM) studies, by Task Group nº 43 (TG-43) and protocols aimed at dosimetry of these radiation sources types. This work aims to analyze the feasibility of using the MCNP-5C (Monte Carlo N-Particle) code to obtain radiometric parameters of brachytherapy sources and so to study the radiation dose variation in the treatment planning. Simulations were performed for the radiation dose variation in the source plan and determined the dosimetric parameters required by TG-43 formalism for the characterization of the two high dose rate iridium-192 sources. The calculated values were compared with the presents in the literature, which were obtained with different Monte Carlo simulations codes. The results showed excellent consistency with the compared codes, enhancing MCNP-5C code the capacity and viability in the sources dosimetry employed in HDR brachytherapy. The method employed may suggest a possible incorporation of this code in the treatment planning systems provided by manufactures together with the equipment, since besides reducing acquisition cost, it can also make the used computational routines more comprehensive, facilitating the brachytherapy ...
Resumo:
The Therapy with proton beam has shown more e ective than Radiotherapy for oncology treatment. However, to its planning use photon beam Computing Tomography that not considers the fundamentals di erences the interaction with the matter between X-rays and Protons. Nowadays, there is a great e ort to develop Tomography with proton beam. In this way it is necessary to know the most likely trajectory of proton beam to image reconstruction. In this work was realized calculus of the most likely trajectory of proton beam in homogeneous target compound with water that was considered the inelastic nuclear interaction. Other calculus was the analytical calculation of lateral de ection of proton beam. In the calculation were utilized programs that use Monte Carlo Method: SRIM 2006 (Stopping and Range of Ions in Matter ), MCNPX (Monte Carlo N-Particle eXtended) v2.50. And to analytical calculation was employed the software Wolfram Mathematica v7.0. We obtained how di erent nuclear reaction models modify the trajectory of proton beam and the comparative between analytical and Monte Carlo method
Resumo:
Não disponível
Resumo:
As normas nacionais e internacionais prevêem que a manutenção dos níveis de radiação deve estar abaixo do permitido. Sendo assim, a ICRP [1] (International Commission on Radiological Protection) exige métodos de otimização para garantir que o público esteja exposto aos menores níveis de radiação possíveis. Como método de otimização, aproximações teóricas e semi-empiricas podem realizar uma determinação do espectro de raios-X, sendo fundamental para o diagnóstico de energia, estimando a dose de radiações em pacientes e formulando modelos de blindagem. Métodos adequados de radioproteção foram desenvolvidos na física médica como a medicina nuclear, a radioterapia e a radiologia diagnóstica. Um dos métodos semi-empiricos utilizados é o modelo de TBC que é capaz de reproduzir e calcular os espectros gerados pelo anodo de tungstênio. Com o modelo de TBC modificado é possível também obedecer às exigências das barreiras protetoras presentes na radiologia, levando em conta a forma de onda arbitrária e a filtração adicional na geração do espectro não presente no modelo original. Além disso, realiza-se a calibração do espectro gerado para que o modelo de TBC represente a quantidade e comportamento de radiações típicas. Dessa forma, realiza-se uma revisão do modelo de TBC implementando-o ao programa matemático Matlab e comparando-o com os resultados adquiridos pelo Código MCNP-5 no Método de Monte Carlo. Os resultados encontrados são bastante satisfatórios, tanto em termos quantitativos quanto qualitativos dos feixes. Para a calibração, desenvolve-se uma análise dos espectros gerados pelo TBC Modificado aplicado ao programa Mathcad e Matlab sob as mesmas condições. Os espectros gerados apresentam o mesmo comportamento, diferindo em até 12% nos valores encontrados para camadas semi-redutoras, coeficiente de homogeneidade e energia efetiva
Resumo:
Medical Physics has been reaching an important role among several lines in Science, providing means for the improvement of several theories and procedures. Currently, its main application is related with the use of ionizing radiations, specially, in treatment procedures such as Radiotherapy. Radiosurgery is a Radiotherapy technique which consists in administering a single tumoricidal dose of radiation exclusively to the tumorous lesion. It becomes then an interesting alternative to surgical treatment, mainly in cerebral metastases, which are the most frequent cerebral tumors in the central nervous system. The radio neurosurgical team works out a planning for the Radiosurgery treatment, aiming for obtaining an appropriate ideal treatment for each case. For the working out of this treatment planning, Computed Tomography images of the region to be treated are obtained, digitalized and later, fused with nuclear magnetic resonance images. Through these images, critical structures, organs at risk and lesions are localized. After this, calculations are made to determine three-dimensional positions of isocenters, isodose curves, prescribed dose, collimators sizes, position, numbers and respective weight of isocentric conformal fields, and others. The treatment planning is commonly based in desired levels of dose for specific types of tumors and organs at risk concerning the irradiated region. Theses levels of dose are chosen in a way that a high probability of cure may be achieved and meanwhile, that the probability of complications, in whichever organ at risk, may be minimal. Thus, many researches have been carried out, showing that mathematical techniques may help to obtain an optimal planning for the treatment of cerebral metastases. Among the methods of optimization in the study...(Complete abstract click electronic access below)
Resumo:
The paper presents the radiometric parameters determined by the medical physicist during routine radiotherapy planning service in cases of breast cancer . The contours of the breast volume in patients undergoing radiation breast tumors at the Hospital das Clinicas, Faculty of Medicine , UNESP, Botucatu ( HCFMB ) during the year 2012 were analyzed . In order to analyze the influence of physical and radiometric parameters for the determination of the dose distribution of irradiated breast volume , four measurements of isodose curves were prepared in four different heights breast , and compared with the isodose curves plotted computationally . In the routine of planning , the medical physicist must determine the isodose curve that gives the best dose distribution homogeneity in the irradiated volume . The choice of the treatment plan can be done by dedicated computer systems , which require significantly costly investments available services having better financial support . In the Service of Medical Physics , Department of Radiotherapy , HC FMB , we use a two-dimensional software for determination of isodose curves , however , this software is out of date and frequently becomes inoperable due to the lack of maintenance and it is a closed system without feasibility of interference from computer professionals . This fact requires manual preparation of isodose curves , which are subject to uncertainties due to the subjectivity in the clinical interpretation of medical radiation oncologist and medical physicist responsible for planning , plus dispendiar significant calculation time . The choice of the optimal isodose curve depends on the energy of the radiation beam , the geometry and dimensions of the irradiated area . The contours of the breast studied in this work evaluations showed that , for a given energy input , such as the energy of 1.25 MeV of gamma radiation Unit Telecobaltoterapia , the determination of the percentage depth dose ( PDP ) ...
Resumo:
According to the National Institute of Cancer – INCA, 466.730 new cancer cases will occur in Brazil in 2009. Prostate and Lung cancer in man are the most incident types (in exception of the non-melanoma cancer). The brachytherapy with 125-iodine sources is an important method of prostate cancer treatment. The implant with iodine-125 seeds uses aproximately 100 seeds that are imported impossibilitating the treatment in large scale. For this reason, a multidisciplinary group was created at the Energetic and Nuclear Research Institute – Radiation Technology Center (IPEN –CTR / SP) to develop a national 125-iodine source and established a facility for local production. The seeds manufacture in Brazil will diminish the cost of treatment and prostate brachytherapy will be offered to more patients. This work aim is to observe and discuss the methods used in seeds manufacture there are being developed in Brazil and to present an prostate cancer case folloied in A.C. Camargo Hospital. The 125-iodine is adsorbed in an silver wire, then deposited at titanium coat. The weld is made by an process of plasm sealing. The seeds goes through several test to guarantee that there is no leakage. The result is an high quality and cheaper product. The implant tecnique is an fast and save procedure. The medical physicst preplan the case to stipulate the quantity of seeds there will be used. At the dat of the implant the medical physicst replan the procedure due to changes of volume in the organ. That assure the correct dose distribution in the target. Besides, the 125-iodine low energy is absorbed at the volume of interrest saving sourronding healthy tissues such as the rectum and the urethra
Resumo:
Betatherapy is a special medical technique using a radioactive source of strontium-90 for the treatment of superficial lesions, especially in dermatology and ophthalmology. Strontium-90 sources emit β radiation, which possesses high ionization power, but a very short distance propagation into matter. This work presents a method of dosimetric analysis of betatherapy using strontium- 90-based instrumentation, commonly used against superficial diseases, such as keloid and pterygium, aiming the description of the dosimetry analysis procedures, which can be easily implemented on tradiotherapy services that offers the betatherapy treatment. IBF-MEDIX radiographic films (conventional films) were exposed to betatherapy applicators during different time intervals according to the activity of the source, and afterwards the optical densities (O. D.) of the radiographic images were measured using an optical densitometer MACBETH. Therefore, the parameters used to make the dosimetric analysis in betatherapy were standardized, as the exposure time depended on the geometry and size of the source, providing an efficient and fast method of dosimetric analysis of the betatherapy equipment of the services, the majority of which do not have the scientific structure to perform this study
Resumo:
In the recent years, the use of proton beams in radiotherapy has been an outstanding progress (SMITH, 2006). Up to now, computed tomography (CT) is a prerequisite for treatment planning in this kind of therapy because it provides the electron density distribution required for calculation of dose and the interval of doses. However, the use of CT images for proton treatment planning ignores fundamental differences in physical interaction processes between photons and protons and is, therefore, potentially inaccurate (SADROZINSKI, 2004). Proton CT (pCT) can in principle directly measure the density distribution needed in a patient for the dose distribution (SCHULTE, et al, 2004). One important problem that should be solved is the implementation of image reconstruction algorithms. In this sense, it is necessary to know how the presence of materials with different density and composition interfere in the energy deposition by ionization and coulomb excitation, during its trajectory. The study was conducted in two stages, was used in both the program SRIM (The Stopping and Range of Ions in Matter) to perform simulations of the interaction of proton beams with pencil beam type. In the first step we used the energies in the range of 100-250 MeV (ZIEGLER, 1999). The targets were set to 50 mm in length for the beam of 100 MeV, due to its interaction with the target, and short-range, and 70 mm for 150, 200 and 250 MeV The target was composed of liquid water and a layer of 6 mm cortical bone (ICRP). It were made 9 simulations varying the position of the heterogeneity of 5 mm. In the second step the energy of 250 MeV was taken out from the simulations, due to its greater energy and less interaction. The targets were diminished to 50 mm thick to standardize the simulations. The layer of bone was divided into two equal parts and both were put in the ends of the target... (Complete abstract click electronic access below)
Resumo:
O tratamento dos Linfomas de Hodgkin e Não - Hodgkin é baseado, atualmente, na combinação de drogas antineoplásicas, associadas ou não à radioterapia. Embora as taxas de cura sejam elevadas, sabe-se que tais terapias podem induzir mutações gênicas e cromossômicas que, mais tarde, podem ser responsáveis pela iniciação de novos processos carcinogênicos ou de doenças degenerativas relacionadas a danos genéticos. Sendo assim, o presente estudo teve por objetivo avaliar o efeito toxicogenético tardio (sobre os níveis de danos no DNA) das terapias antineoplásicas para linfomas. Para isso, foram incluídos no estudo 10 pacientes recém diagnosticados com linfoma (Grupo 1- Pré-terapia), 10 pacientes com história de linfoma e que finalizaram o tratamento antineoplásico há no mínimo dois anos (Grupo 2- Pós-terapia) e 10 indivíduos saudáveis (Grupo 3- Controles). Os linfócitos de sangue periférico foram utilizados para se avaliar os níveis de danos no DNA pelo teste do cometa. Além disso, foi avaliada a eficiência do sistema de reparo do DNA frente às lesões induzidas in vitro pelo peróxido de hidrogênio (H2O2). Os dados mostraram que não houve diferença estatisticamente significativa nos níveis de danos no DNA entre os três grupos. No entanto, foram observadas diferenças estatisticamente significativas no reparo das lesões induzidas pelo (H2O2), com o grupo controle apresentado maior indução de danos em comparação com aos demais grupos (p <0,05). Concluindo, os resultados não evidenciaram efeitos toxicogenéticos tardios decorrentes da exposição às terapias antineoplásicas para linfomas
Resumo:
Radiotherapy in veterinary practice is already known and widely distributed in large specialized centers of developed countries. In early 2000, there were about 30 radiotherapy equipment specifically designed for the veterinary clinic in the United States. In Brazil, the veterinary radiotherapy is still confined to research in universities, where most of the procedures is radiation therapy performed with superficial x-ray machines, with a voltage between 50 and 150 kVp, focus-distance surface (DFS) between 20,0cm and 40,0cm. As that occurs in human medicine, new research strengthens the development and prospects for the use of radiotherapy as a safe option for treating cancer in animals. This paper presents a methodology for calculating the exposure time for superficial radiotherapy procedures in veterinary medicine for small animals (dogs and cats). The dosimetric parameters of X-rays are determined using a spreadsheet tool for Microsoft Office Excel, developed in this paper for a device Dermopan 2, Veterinary Hospital of UNESP in Araçatuba. Using the worksheet helps the veterinarian to determine the time of exposure to radiation determined for each clinical case, optimize the workflow for professionals in veterinary radiotherapy procedures, which often lack the medical physics in team and at the time of radiotherapy. The correct use of spreadsheet decreases the chances of errors in dose rates of radiation, providing a higher quality of care