837 resultados para ROBUST ESTIMATES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Green Feed (GF) system (C-Lock Inc., Rapid City, USA) is used to estimate total daily methane emissions of individual cattle using short-term measurements obtained over several days. Our objective was to compare measurements of methane emission by growing cattle obtained using the GF system with measurements using respiration chambers (RC)or sulphur hexafluoride tracer (SF6). It was hypothesised that estimates of methane emission for individual animals and treatments would be similar for GF compared to RC or SF6 techniques. In experiment 1, maize or grass silage-based diets were fed to four growing Holstein heifers, whilst for experiment 2, four different heifers were fed four haylage treatments. Both experiments were a 4 × 4 Latin square design with 33 day periods. Green Feed measurements of methane emission were obtained over 7 days (days 22–28) and com-pared to subsequent RC measurements over 4 days (days 29–33). For experiment 3, 12growing heifers rotationally grazed three swards for 26 days, with simultaneous GF and SF6 measurements over two 4 day measurement periods (days 15–19 and days 22–26).Overall methane emissions (g/day and g/kg dry matter intake [DMI]) measured using GF in experiments 1 (198 and 26.6, respectively) and 2 (208 and 27.8, respectively) were similar to averages obtained using RC (218 and 28.3, respectively for experiment 1; and 209 and 27.7, respectively, for experiment 2); but there was poor concordance between the two methods (0.1043 for experiments 1 and 2 combined). Overall, methane emissions measured using SF6 were higher (P<0.001) than GF during grazing (186 vs. 164 g/day), but there was significant (P<0.01) concordance between the two methods (0.6017). There were fewer methane measurements by GF under grazing conditions in experiment 3 (1.60/day) com-pared to indoor measurements in experiments 1 (2.11/day) and 2 (2.34/day). Significant treatment effects on methane emission measured using RC and SF6 were not evident for GF measurements, and the ranking for treatments and individual animals differed using the GF system. We conclude that under our conditions of use the GF system was unable to detectsignificant treatment and individual animal differences in methane emissions that were identified using both RC and SF6techniques, in part due to limited numbers and timing ofmeasurements obtained. Our data suggest that successful use of the GF system is reliant on the number and timing of measurements obtained relative to diurnal patterns of methane emission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study has compared preliminary estimates of effective leaf area index (LAI) derived from fish-eye lens photographs to those estimated from airborne full-waveform small-footprint LiDAR data for a forest dataset in Australia. The full-waveform data was decomposed and optimized using a trust-region-reflective algorithm to extract denser point clouds. LAI LiDAR estimates were derived in two ways (1) from the probability of discrete pulses reaching the ground without being intercepted (point method) and (2) from raw waveform canopy height profile processing adapted to small-footprint laser altimetry (waveform method) accounting for reflectance ratio between vegetation and ground. The best results, that matched hemispherical photography estimates, were achieved for the waveform method with a study area-adjusted reflectance ratio of 0.4 (RMSE of 0.15 and 0.03 at plot and site level, respectively). The point method generally overestimated, whereas the waveform method with an arbitrary reflectance ratio of 0.5 underestimated the fish-eye lens LAI estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As satellite technology develops, satellite rainfall estimates are likely to become ever more important in the world of food security. It is therefore vital to be able to identify the uncertainty of such estimates and for end users to be able to use this information in a meaningful way. This paper presents new developments in the methodology of simulating satellite rainfall ensembles from thermal infrared satellite data. Although the basic sequential simulation methodology has been developed in previous studies, it was not suitable for use in regions with more complex terrain and limited calibration data. Developments in this work include the creation of a multithreshold, multizone calibration procedure, plus investigations into the causes of an overestimation of low rainfall amounts and the best way to take into account clustered calibration data. A case study of the Ethiopian highlands has been used as an illustration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assessments concerning the effects of climate change, water resource availability and water deprivation in West Africa have not frequently considered the positive contribution to be derived from collecting and reusing water for domestic purposes. Where the originating water is taken from a clean water source and has been used the first time for washing or bathing, this water is commonly called “greywater”. Greywater is a prolific resource that is generated wherever people live. Treated greywater can be used for domestic cleaning, for flushing toilets where appropriate, for washing cars, sometimes for watering kitchen gardens, and for clothes washing prior to rinsing. Therefore, a large theoretical potential exists to increase total water resource availability if greywater were to be widely reused. Locally treated greywater reduces the distribution network requirement, lower construction effort and cost and, wherever possible, minimising the associated carbon footprint. Such locally treated greywater offers significant practical opportunities for increasing the total available water resources at a local level. The reuse of treated greywater is one important action that will help to mitigate the reducing availability of clean water supplies in some areas, and the expected mitigation required in future aligns well with WHO/UNICEF (2012) aspirations. The evaluation of potential opportunities for prioritising greywater systems to support water reuse takes into account the availability of water resources, water use indicators and published estimates in order to understand typical patterns of water demand. The approach supports knowledge acquisition regarding local conditions for enabling capacity building for greywater reuse, the understanding of systems that are most likely to encourage greywater reuse, and practices and future actions to stimulate greywater infrastructure planning, design and implementation. Although reuse might be considered to increase the uncertainty of achieving a specified quality of the water supply, robust methods and technologies are available for local treatment. Resource strategies for greywater reuse have the potential to consistently improve water efficiency and availability in water impoverished and water stressed regions of Ghana and West Africa. Untreated greywater is referred to as “greywater”; treated greywater is referred to as “treated greywater” in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper uses a novel numerical optimization technique - robust optimization - that is well suited to solving the asset-liability management (ALM) problem for pension schemes. It requires the estimation of fewer stochastic parameters, reduces estimation risk and adopts a prudent approach to asset allocation. This study is the first to apply it to a real-world pension scheme, and the first ALM model of a pension scheme to maximise the Sharpe ratio. We disaggregate pension liabilities into three components - active members, deferred members and pensioners, and transform the optimal asset allocation into the scheme’s projected contribution rate. The robust optimization model is extended to include liabilities and used to derive optimal investment policies for the Universities Superannuation Scheme (USS), benchmarked against the Sharpe and Tint, Bayes-Stein, and Black-Litterman models as well as the actual USS investment decisions. Over a 144 month out-of-sample period robust optimization is superior to the four benchmarks across 20 performance criteria, and has a remarkably stable asset allocation – essentially fix-mix. These conclusions are supported by six robustness checks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the elliptic reconstruction technique in combination with a duality approach to prove a posteriori error estimates for fully discrete backward Euler scheme for linear parabolic equations. As an application, we combine our result with the residual based estimators from the a posteriori estimation for elliptic problems to derive space-error indicators and thus a fully practical version of the estimators bounding the error in the $ \mathrm {L}_{\infty }(0,T;\mathrm {L}_2(\varOmega ))$ norm. These estimators, which are of optimal order, extend those introduced by Eriksson and Johnson in 1991 by taking into account the error induced by the mesh changes and allowing for a more flexible use of the elliptic estimators. For comparison with previous results we derive also an energy-based a posteriori estimate for the $ \mathrm {L}_{\infty }(0,T;\mathrm {L}_2(\varOmega ))$-error which simplifies a previous one given by Lakkis and Makridakis in 2006. We then compare both estimators (duality vs. energy) in practical situations and draw conclusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The low expression polymorphism of the MAOA gene in interaction with adverse environments (G × E) is associated with antisocial behaviour disorders. These have their origins in early life, but it is not known whether MAOA G × E occurs in infants. We therefore examined whether MAOA G × E predicts infant anger proneness, a temperamental dimension associated with later antisocial behaviour disorders. In contrast to previous studies, we examined MAOA G × E prospectively using an observational measure of a key aspect of the infant environment, maternal sensitivity, at a specified developmental time point. Methods In a stratified epidemiological cohort recruited during pregnancy, we ascertained MAOA status (low vs. high expression alleles) from the saliva of 193 infants, and examined specific predictions to maternal report of infant temperament at 14 months from maternal sensitivity assessed at 29 weeks of age. Results Analyses, weighted to provide general population estimates, indicated a robust interaction between MAOA status and maternal sensitivity in the prediction of infant anger proneness (p = .003) which became stronger once possible confounders for maternal sensitivity were included in the model (p = .0001). The interaction terms were similar in males (p = .010) and females (p = .016), but the effects were different as a consequence of an additional sex of infant by maternal sensitivity interaction. Conclusions This prospective study provides the first evidence of moderation by the MAOA gene of effects of parenting on infant anger proneness, an important early risk for the development of disruptive and aggressive behaviour disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sclera segmentation is shown to be of significant importance for eye and iris biometrics. However, sclera segmentation has not been extensively researched as a separate topic, but mainly summarized as a component of a broader task. This paper proposes a novel sclera segmentation algorithm for colour images which operates at pixel-level. Exploring various colour spaces, the proposed approach is robust to image noise and different gaze directions. The algorithm’s robustness is enhanced by a two-stage classifier. At the first stage, a set of simple classifiers is employed, while at the second stage, a neural network classifier operates on the probabilities’ space generated by the classifiers at stage 1. The proposed method was ranked the 1st in Sclera Segmentation Benchmarking Competition 2015, part of BTAS 2015, with a precision of 95.05% corresponding to a recall of 94.56%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimating trajectories and parameters of dynamical systems from observations is a problem frequently encountered in various branches of science; geophysicists for example refer to this problem as data assimilation. Unlike as in estimation problems with exchangeable observations, in data assimilation the observations cannot easily be divided into separate sets for estimation and validation; this creates serious problems, since simply using the same observations for estimation and validation might result in overly optimistic performance assessments. To circumvent this problem, a result is presented which allows us to estimate this optimism, thus allowing for a more realistic performance assessment in data assimilation. The presented approach becomes particularly simple for data assimilation methods employing a linear error feedback (such as synchronization schemes, nudging, incremental 3DVAR and 4DVar, and various Kalman filter approaches). Numerical examples considering a high gain observer confirm the theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anti-spoofing is attracting growing interest in biometrics, considering the variety of fake materials and new means to attack biometric recognition systems. New unseen materials continuously challenge state-of-the-art spoofing detectors, suggesting for additional systematic approaches to target anti-spoofing. By incorporating liveness scores into the biometric fusion process, recognition accuracy can be enhanced, but traditional sum-rule based fusion algorithms are known to be highly sensitive to single spoofed instances. This paper investigates 1-median filtering as a spoofing-resistant generalised alternative to the sum-rule targeting the problem of partial multibiometric spoofing where m out of n biometric sources to be combined are attacked. Augmenting previous work, this paper investigates the dynamic detection and rejection of livenessrecognition pair outliers for spoofed samples in true multi-modal configuration with its inherent challenge of normalisation. As a further contribution, bootstrap aggregating (bagging) classifiers for fingerprint spoof-detection algorithm is presented. Experiments on the latest face video databases (Idiap Replay- Attack Database and CASIA Face Anti-Spoofing Database), and fingerprint spoofing database (Fingerprint Liveness Detection Competition 2013) illustrate the efficiency of proposed techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While a multitude of motion segmentation algorithms have been presented in the literature, there has not been an objective assessment of different approaches to fusing their outputs. This paper investigates the application of 4 different fusion schemes to the outputs of 3 probabilistic pixel-level segmentation algorithms. We performed an extensive experimentation using 6 challenge categories from the changedetection.net dataset demonstrating that in general simple majority vote proves to be more effective than more complex fusion schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent temperature extremes have highlighted the importance of assessing projected changes in the variability of temperature as well as the mean. A large fraction of present day temperature variance is associated with thermal advection, as anomalous winds blow across the land-sea temperature contrast for instance. Models project robust heterogeneity in the 21st century warming pattern under greenhouse gas forcing, resulting in land-sea temperature contrasts increasing in summer and decreasing in winter, and the pole-to-equator temperature gradient weakening in winter. In this study, future monthly variability changes in the 17 member ensemble ESSENCE are assessed. In winter, variability in midlatitudes decreases while in very high latitudes and the tropics it increases. In summer, variability increases over most land areas and in the tropics, with decreasing variability in high latitude oceans. Multiple regression analysis is used to determine the contributions to variability changes from changing temperature gradients and circulation patterns. Thermal advection is found to be of particular importance in the northern hemisphere winter midlatitudes, where the change in mean state temperature gradients alone could account for over half the projected changes. Changes in thermal advection are also found to be important in summer in Europe and coastal areas, although less so than in winter. Comparison with CMIP5 data shows that the midlatitude changes in variability are robust across large regions, particularly high northern latitudes in winter and mid northern latitudes in summer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simultaneous all angle collocations (SAACs) of microwave humidity sounders (AMSU-B and MHS) on-board polar orbiting satellites are used to estimate scan-dependent biases. This method has distinct advantages over previous methods, such as that the estimated scan-dependent biases are not influenced by diurnal differences between the edges of the scan and the biases can be estimated for both sides of the scan. We find the results are robust in the sense that biases estimated for one satellite pair can be reproduced by double differencing biases of these satellites with a third satellite. Channel 1 of these instruments shows the least bias for all satellites. Channel 2 has biases greater than 5 K, thus needs to be corrected. Channel 3 has biases of about 2 K and more and they are time varying for some of the satellites. Channel 4 has the largest bias which is about 15 K when the data are averaged for 5 years, but biases of individual months can be as large as 30 K. Channel 5 also has large and time varying biases for two of the AMSU-Bs. NOAA-15 (N15) channels are found to be affected the most, mainly due to radio frequency interference (RFI) from onboard data transmitters. Channel 4 of N15 shows the largest and time varying biases, so data of this channel should only be used with caution for climate applications. The two MHS instruments show the best agreement for all channels. Our estimates may be used to correct for scan-dependent biases of these instruments, or at least used as a guideline for excluding channels with large scan asymmetries from scientific analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A smoother introduced earlier by van Leeuwen and Evensen is applied to a problem in which real obser vations are used in an area with strongly nonlinear dynamics. The derivation is new , but it resembles an earlier derivation by van Leeuwen and Evensen. Again a Bayesian view is taken in which the prior probability density of the model and the probability density of the obser vations are combined to for m a posterior density . The mean and the covariance of this density give the variance-minimizing model evolution and its errors. The assumption is made that the prior probability density is a Gaussian, leading to a linear update equation. Critical evaluation shows when the assumption is justified. This also sheds light on why Kalman filters, in which the same ap- proximation is made, work for nonlinear models. By reference to the derivation, the impact of model and obser vational biases on the equations is discussed, and it is shown that Bayes’ s for mulation can still be used. A practical advantage of the ensemble smoother is that no adjoint equations have to be integrated and that error estimates are easily obtained. The present application shows that for process studies a smoother will give superior results compared to a filter , not only owing to the smooth transitions at obser vation points, but also because the origin of features can be followed back in time. Also its preference over a strong-constraint method is highlighted. Further more, it is argued that the proposed smoother is more efficient than gradient descent methods or than the representer method when error estimates are taken into account