930 resultados para RNA-dependent RNA polymerase (RdRp)
Resumo:
We show here a simplified reverse transcription-polymerase chain reaction (RT-PCR) for identification of dengue type 2 virus. Three dengue type 2 virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD, as a negative control, were used in this study. C6/36 cells were infected with the virus, and tissue culture fluids were collected after 7 days of infection period. The RT-PCR, a combination of RT and PCR done after a single addition of reagents in a single reaction vessel was carried out following a digestion of virus with 1% Nonidet P-40. The 50ml assay reaction mixture included 50 pmol of a dengue type 2 specific primer pair amplifying a 210 base pair sequence of the envelope protein gene, 0.1 mM of the four deoxynucleoside triphosphates, 7.5U of reverse transcriptase, and 1U of thermostable Taq DNA polymerase. The reagent mixture was incubated for 15 min at 37oC for RT followed by a variable amount of cycles of two-step PCR amplification (92oC for 60 sec, 53oC for 60 sec) with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized with UV light after gel incubation in ethidium bromide solution. DNA bands were observed after 25 and 30 cycles of PCR. Virus amount as low as 102.8 TCID50/ml was detected by RT-PCR. Specific DNA amplification was observed with the three dengue type 2 strains. This assay has advantages compared to other RT-PCRs: it avoids laborious extraction of virus RNA; the combination of RT and PCR reduces assay time, facilitates the performance and reduces risk of contamination; the two-step PCR cycle produces a clear DNA amplification, saves assay time and simplifies the technique
Resumo:
BACKGROUND: Hepatitis C virus (HCV) infection is a major cause of morbidity in HIV infected individuals. Coinfection with HIV is associated with diminished HCV-specific immune responses and higher HCV RNA levels. AIMS: To investigate whether long-term combination antiretroviral therapy (cART) restores HCV-specific T cell responses and improves the control of HCV replication. METHODS: T cell responses were evaluated longitudinally in 80 HIV/HCV coinfected individuals by ex vivo interferon-gamma-ELISpot responses to HCV core peptides, that predominantly stimulate CD4(+) T cells. HCV RNA levels were assessed by real-time PCR in 114 individuals. RESULTS: The proportion of individuals with detectable T cell responses to HCV core peptides was 19% before starting cART, 24% in the first year on cART and increased significantly to 45% and 49% after 33 and 70 months on cART (p=0.001). HCV-specific immune responses increased in individuals with chronic (+31%) and spontaneously cleared HCV infection (+30%). Median HCV RNA levels before starting cART were 6.5 log(10) IU/ml. During long-term cART, median HCV-RNA levels slightly decreased compared to pre-cART levels (-0.3 log10 IU/ml, p=0.02). CONCLUSIONS: Successful cART is associated with increasing cellular immune responses to HCV core peptides and with a slight long-term decrease in HCV RNA levels. These findings are in line with the favourable clinical effects of cART on the natural history of hepatitis C and with the current recommendation to start cART earlier in HCV/HIV coinfected individuals.
Resumo:
In this study, HIV-1 viral load quantitation determined by Nucleic Acid Sequence Based Amplification (NASBA) was compared with other surrogate disease progression markers (antigen p24, CD4/CD8 cell counts and b-2 microglobulin) in 540 patients followed up at São Paulo, SP, Brazil. HIV-1 RNA detection was statistically associated with the presence of antigen p24, but the viral RNA was also detected in 68% of the antigen p24 negative samples, confirming that NASBA is much more sensitive than the determination of antigen p24. Regarding other surrogate markers, no statistically significant association with the detection of viral RNA was found. The reproducibility of this viral load assay was assessed by 14 runs of the same sample, using different reagents batches. Viral load values in this sample ranged from 5.83 to 6.27 log (CV = 36 %), less than the range (0.5 log) established to the determination of significant viral load changes.
Resumo:
The freshwater snails Biomphalaria straminea, B. intermedia, B. kuhniana and B. peregrina, are morphologically similar; based on this similarity the first three species were therefore grouped in the complex B. straminea. The morphological identification of these species is based on characters such as vaginal wrinkling, relation between prepuce: penial sheath:deferens vas and number of muscle layers in the penis wall. In this study the polymerase chain reaction restriction fragment length polymorphism technique was used for molecular identification of these molluscs. This technique is based on the amplification of the internal transcribed spacer regions ITS1 e ITS2 of the ribosomal RNA gene and subsequent digestion of these fragments by restriction enzymes. Six enzymes were tested: Dde I, Mnl I, Hae III, Rsa I, Hpa II e Alu I. The restriction patterns obtained with DdeI presented the best profile for separation of the four species of Biomphalaria. The profiles obtained with all the enzymes were used to estimate the genetic distances among the species through analysis of common banding patterns.
Resumo:
ABSTRACT : Gene duplication is a fundamental source of raw material for the origin of genetic novelty. It has been assumed for a long time that DNA-based gene duplication was the only source of new genes. Recently however, RNA-based gene duplication (retroposition) was shown in multiple organisms to contribute significantly to their genetic diversity. This mechanism produces intronless gene copies (retrocopies) that are inserted in random genomic position, independent of the position of the parental source genes. In human, mouse and fruit fly, it was demonstrated that the X-linked genes spawned an excess of functional retroposed gene copies (retrogenes). In human and mouse, the X chromosome also recruited an excess of retrogenes. Here we further characterized these interesting biases related to the X chromosome in mammals. Firstly, we have confirmed presence of the aforementioned biases in dog and opossum genome. Then based on the expression profile of retrogenes during various spermatogenetic stages, we have provided solid evidence that meiotic sex chromosome inactivation (MSCI) is responsible for an excess of retrogenes stemming from the X chromosome. Moreover, we showed that the X-linked genes started to export an excess of retrogenes just after the split of eutherian and marsupial mammalian lineages. This suggests that MSCI has originated around this time as well. More fundamentally, as MSCI reflects the spread of recombination barrier between the X and Y chromosomes during their evolution, our observation allowed us to re-estimate the age of mammalian sex chromosomes. Previous estimates suggested that they emerged in the common ancestor of all mammals (before the split of monotreme lineage); whereas, here we showed that they originated around the split of marsupial and eutherian lineages, after the divergence of monotremes. Thus, the therian (marsupial and eutherian) sex chromosomes are younger than previously thought. Thereafter, we have characterized the bias related to the recruitment of genes to the X chromosome. Sexually antagonistic forces are most likely driving this pattern. Using our limited retrogenes expression data, it is difficult to determine the exact nature of these forces but some conclusions have been made. Lastly, we looked at the history of this biased recruitment: it commenced around the split of marsupial and eutherian lineages (akin to the biased export of genes out of the X). In fact, the sexually antagonistic forces are predicted to appear just around that time as well. Thereby, the history of the recruitment of genes to the X, provides an indirect evidence that these forces are responsible for this bias.
Resumo:
The RsmA family of RNA-binding proteins are global post-transcriptional regulators that mediate extensive changes in gene expression in bacteria. They bind to, and affect the translation rate of target mRNAs, a function that is further modulated by one or more, small, untranslated competitive regulatory RNAs. To gain new insights into the nature of this protein/RNA interaction, we used X-ray crystallography to solve the structure of the Yersinia enterocolitica RsmA homologue. RsmA consists of a dimeric beta barrel from which two alpha helices are projected. From structure-based alignments of the RsmA protein family from diverse bacteria, we identified key amino acid residues likely to be involved in RNA-binding. Site-specific mutagenesis revealed that arginine at position 44, located at the N terminus of the alpha helix is essential for biological activity in vivo and RNA-binding in vitro. Mutation of this site affects swarming motility, exoenzyme and secondary metabolite production in the human pathogen Pseudomonas aeruginosa, carbon metabolism in Escherichia coli, and hydrogen cyanide production in the plant beneficial strain Pseudomonas fluorescens CHA0. R44A mutants are also unable to interact with the small untranslated RNA, RsmZ. Thus, although possessing a motif similar to the KH domain of some eukaryotic RNA-binding proteins, RsmA differs substantially and incorporates a novel class of RNA-binding site.
Resumo:
In order to search for novel genes involved in cell proliferation, the hypothesis was that by infecting primary cells with a cDNA library of immortal cells would render immortalizing genes. Consequently it has been discovered CIRP (Cold inducible RNA-binding protein). Mammalian cells exposed to mild hypothermia show a general inhibition of protein synthesis and a concomitant increase in the expression of a small number of cold-shock mRNAs and proteins. Rbm3, another RNA binding protein belonging to the same family, has been postulated to facilitate protein synthesis at mild cold shock. To investigate if the same occurs for CIRP, CIRP was overexpressed in primary cells and protein sintesis was measured. Interestingly, CIRP increased protein synthesis, however, such increase did not involve an increase in the polysome fraction or affected the ribosome profile. In addition, the effect caused by CIRP inhibition or knockdown was also analyzed. Different siRNAs against CIRP were tested. Once checked their efficiency by decreasing CIRP at mRNA and protein levels, proliferation was tested by BrdU, cell number (DAPI) and proliferation curves were performed. Interestingly, CIRP provoke a decreased proliferation in primary cells: MEFs, HMEC; and cancer cells: TERA2 and HeLa. In conclusion, we describe for the first time that CIRP bypasses replicative senescence when over-expressed at physiological temperature (37ºC) by increasing a general protein synthesis. This effect is achieved through ERK1/2 activation in MEFs.The decrease in growth rate found in mammalian cells treated with mild cold stress is not entirely attributable to arrested metabolism. This decrease may also involve an active process in which CIRP and other stress-responsive proteins play a fundamental role in stimulating proliferation. Although most cell proteins are down-regulated or inhibited with cold stress, CIRP is activated to maintain cells in an active proliferative status and its overexpression at 37°C might be potentially oncogenic.
Resumo:
An hemodialysis population in Central Brazil was screened by polymerase chain reaction (PCR) and serological methods to assess the prevalence of hepatitis C virus (HCV) infection and to investigate associated risk factors. All hemodialysis patients (n=428) were interviewed in eight dialysis units in Goiânia city. Blood samples were collected and serum samples screened for anti-HCV antibodies by an enzyme-linked immunosorbent assay (ELISA). Positive samples were retested for confirmation with a line immunoassay (LIA). All samples were also tested for HCV RNA by the PCR. An overall prevalence of 46.7% (CI 95%: 42-51.5) was found, ranging from 20.7% (CI 95%: 8.8-38.1) to 90.4% (CI 95%: 79.9-96.4) depending on the dialysis unit. Of the 428 patients, 185 were found to be seropositive by ELISA, and 167 were confirmed positive by LIA, resulting in an anti-HCV prevalence of 39%. A total of 131 patients were HCV RNA-positive. HCV viremia was present in 63.5% of the anti-HCV-positive patients and in 10.3% of the anti-HCV-negative patients. Univariate analysis of risk factors showed that the number of previous blood transfusions, transfusion of blood before mandatory screening for anti-HCV, length of time on hemodialysis, and treatment in multiple units were associated with HCV positivity. However, multivariate analysis revealed that blood transfusion before screening for anti-HCV and length of time on hemodialysis were significantly associated with HCV infection in this population. These data suggest that nosocomial transmission may play a role in the spread of HCV in the dialysis units studied. In addition to anti-HCV screening, HCV RNA detection is necessary for the diagnosis of HCV infection in hemodialysis patients.
Resumo:
Using genetically matched azole-susceptible (AS) and azole-resistant (AR) clinical isolates of Candida albicans, we recently demonstrated that CDR1 overexpression in AR isolates is due to its enhanced transcriptional activation and mRNA stability. This study examines the molecular mechanisms underlying enhanced CDR1 mRNA stability in AR isolates. Mapping of the 3' untranslated region (3' UTR) of CDR1 revealed that it was rich in adenylate/uridylate (AU) elements, possessed heterogeneous polyadenylation sites, and had putative consensus sequences for RNA-binding proteins. Swapping of heterologous and chimeric lacZ-CDR1 3' UTR transcriptional reporter fusion constructs did not alter the reporter activity in AS and AR isolates, indicating that cis-acting sequences within the CDR1 3' UTR itself are not sufficient to confer the observed differential mRNA decay. Interestingly, the poly(A) tail of the CDR1 mRNA of AR isolates was approximately 35-50 % hyperadenylated as compared with AS isolates. C. albicans poly(A) polymerase (PAP1), responsible for mRNA adenylation, resides on chromosome 5 in close proximity to the mating type-like (MTL) locus. Two different PAP1 alleles, PAP1-a/PAP1-alpha, were recovered from AS (MTL-a/MTL-alpha), while a single type of PAP1 allele (PAP1-alpha) was recovered from AR isolates (MTL-alpha/MTL-alpha). Among the heterozygous deletions of PAP1-a (Deltapap1-a/PAP1-alpha) and PAP1-alpha (PAP1-a/Deltapap1-alpha), only the former led to relatively enhanced drug resistance, to polyadenylation and to transcript stability of CDR1 in the AS isolate. This suggests a dominant negative role of PAP1-a in CDR1 transcript polyadenylation and stability. Taken together, our study provides the first evidence, to our knowledge, that loss of heterozygosity at the PAP1 locus is linked to hyperadenylation and subsequent increased stability of CDR1 transcripts, thus contributing to enhanced drug resistance.
Resumo:
A heminested-PCR (hn-PCR) using primers to the nucleoprotein-coding gene in a nested set was evaluated in the detection of Brazilian strains of rabies virus (RV). A representative number of RV nucleoprotein sequences belonging to genotype 1 were aligned. Based on such alignment, primers were directed to highly conserved regions. All 42 clinical samples positive by both fluorescent antibody and mouse inoculation tests were also positive by the hn-PCR. Brain tissue that had been left to decompose, obtained from an experimentally inoculated mouse was tested by hn-PCR and yielded positive results. In conclusion, primers designed here were capable of amplifying Brazilian RV isolates obtained from a rural epidemiological cycle.
Resumo:
PURPOSE: The purpose of this work was to study the influence of cell differentiation on the mRNA expression of transporters and channels in Caco-2 cells and to assess Caco-2 cells as a model for carrier-mediated drug transport in the intestines. METHOD: Gene mRNA expression was measured using a custom-designed microarray chip with 750 deoxyoligonucleotide probes (70mers). Each oligomer was printed four times on poly-lysine-coated glass slides. Expression profiles were expressed as ratio values between fluorescence intensities of Cy3 and Cy5 dye-labeled cDNA derived from poly(A) + RNA samples of Caco-2 cells and total RNA of human intestines. RESULTS: Significant differences in the mRNA expression profile of transporters and channels were observed upon differentiation of Caco-2 cells from 5 days to 2 weeks in culture, including changes for MAT8, S-protein, and Nramp2. Comparing Caco-2 cells of different passage number revealed few changes in mRNAs except for GLUT3, which was down-regulated 2.4-fold within 13 passage numbers. Caco-2 cells had a similar expression profile when either cultured in flasks or on filters but differed more strongly from human small and large intestine, regardless of the differentiation state of Caco-2 cells. Expression of several genes highly transcribed in small or large intestines differed fourfold or more in Caco-2 cells. CONCLUSIONS: Although Caco-2 cells have proven a suitable model for studying carrier-mediated transport in human intestines, the expression of specific transporter and ion channel genes may differ substantially.
Resumo:
OBJECTIVE: To investigate the involvement of the nuclear factor (NF)-kappaB in the interleukin (IL)-1 beta-mediated macrophage migration inhibitory factor (MIF) gene activation. DESIGN: Prospective study. SETTING: Human reproduction research laboratory. PATIENT(S): Nine women with endometriotic lesions. INTERVENTION(S): Endometriotic lesions were obtained during laparoscopic surgery. MAIN OUTCOME MEASURE(S): The MIF protein secretion was analyzed by ELISA, MIF mRNA expression by quantitative real-time polymerase chain reaction (PCR), NF-kappaB translocation into the nucleus by electrophoresis mobility shift assay, I kappaB phosphorylation and degradation by Western blot, and human MIF promoter activity by transient cell transfection. RESULT(S): This study showed a significant dose-dependent increase of MIF protein secretion and mRNA expression, the NF-kappaB translocation into the nucleus, I kappaB phosphorylation, I kappaB degradation, and human MIF promoter activity in endometriotic stromal cells in response to IL-1 beta. Curcumin (NF-kappaB inhibitor) significantly inhibited all these IL-1 beta-mediated effects. Analysis of the activity of deletion constructs of the human MIF promoter and a computer search localized two putative regulatory elements corresponding to NF-kappaB binding sites at positions -2538/-2528 bp and -1389/-1380 bp. CONCLUSION(S): This study suggests the involvement of the nuclear transcription factor NF-kappaB in MIF gene activation in ectopic endometrial cells in response to IL-1 beta and identifies a possible pathway of endometriosis-associated inflammation and ectopic cell growth.
Resumo:
To produce agronomically competitive rice with nutritionally superior, environmentally safe phytic acid (PA) levels, hairpin RNA (hpRNA)- and artificial microRNA (amiRNA)-mediated gene silencing approaches were explored to reduce both myo-inositol kinase gene (OsMIK) expression and PA accumulation in rice seeds. hpRNA and amiRNA sequences targeted to OsMIK (hpMIK and amiMIK), under the control of a rice Ole18 promoter, were transformed into the rice cultivar Nippon-bare. Fourteen and 21 independent transgenic events were identified containing the hpMIK and amiMIK constructs, respectively, from which five stable homozygous transgenic lines of each were developed together with their null siblings. Southern blotting demonstrated transgene integration into the genome and quantitative real-time PCR showed that gene silencing was restricted to seeds. OsMIK transcripts were significantly reduced in both transgenic amiMIK and hpMIK seeds, which had PA levels reduced by 14.9-50.2 and 38.1-50.7 %, respectively, compared with their respective null siblings. There were no systematic significant differences in agronomic traits between the transgenic lines and their non-transgenic siblings, and no correlation between seed PA contents and decreased rates of seed germination and seedling emergence. The results of the present study suggest that Ole 18-driven OsMIK silencing via hpRNA and amiRNA could be an effective way to develop agronomically competitive low phytic acid rice.