978 resultados para REGULATOR
Resumo:
The opportunistic human pathogen Pseudomonas aeruginosa is able to utilize a wide range of carbon and nitrogen compounds, allowing it to grow in vastly different environments. The uptake and catabolism of growth substrates are organized hierarchically by a mechanism termed catabolite repression control (Crc) whereby the Crc protein establishes translational repression of target mRNAs at CA (catabolite activity) motifs present in target mRNAs near ribosome binding sites. Poor carbon sources lead to activation of the CbrAB two-component system, which induces transcription of the small RNA (sRNA) CrcZ. This sRNA relieves Crc-mediated repression of target mRNAs. In this study, we have identified novel targets of the CbrAB/Crc system in P. aeruginosa using transcriptome analysis in combination with a search for CA motifs. We characterized four target genes involved in the uptake and utilization of less preferred carbon sources: estA (secreted esterase), acsA (acetyl-CoA synthetase), bkdR (regulator of branched-chain amino acid catabolism) and aroP2 (aromatic amino acid uptake protein). Evidence for regulation by CbrAB, CrcZ and Crc was obtained in vivo using appropriate reporter fusions, in which mutation of the CA motif resulted in loss of catabolite repression. CbrB and CrcZ were important for growth of P. aeruginosa in cystic fibrosis (CF) sputum medium, suggesting that the CbrAB/Crc system may act as an important regulator during chronic infection of the CF lung.
Resumo:
Previous studies in the lab of Dr. Liliane Michalik, have shown thai the nuclear hormone receptor Peroxisome Proliferator Activated Receptor beta/delta (PPARß/ö) is an important regulator of skin homeostasis, being involved in the regulation of keratinocyte differentiation, inflammation, apoptosis, arid mouse skin wound healing. Studies of PPARß/ö knock out mice have suggested a possible role for this receptor in cancer. However, contradictory observations of the role for PPARß/ö on tumor growth have been published, depending on cellular contexts and biological models. Given the controversial role of PPARß/ö in skin carcinoma development, the main aim of this PhD work has been to further explore the implication of PPARß/ö in skin response to UV and skin tumor growth. This PhD dissertation is divided in four chapters. The first chapter describes the core part of the project, where I explored the changes in miRNA expression in the skin upon chronic UV irradiation of PPARß/ö wild type and knock-out mice. This analysis shed light on a miRNA- PPARß/ö signature and also predicted thai miR-21-3p (previously named miR-21*) is a key regulator of the PPARß/ö-dependent UV response in the pre-lesiona! skin. Using mice acutely UV-irradiated, ! further demonstrated that miR-21-3p is indirectly regulated by PPARß/ö through activation of Transforming Growth Factor (TGFß)-1 under UV exposure. I also show that miR-21-3p is deregulated in human cutaneous squamous celi carcinoma. In cultured keratinocytes, application of a miR-21 -3p mimic oligonucleotide sequence leads to the regulation of lipid metabolism-related pathway. In the second chapter, I demonstrate that the usage of an mRNA/miRNA combined bioinformatics analysis leads to the discovery of important pathways involved in the PPARß/ö-miRNA response of the skin to chronic UV irradiation, indeed, I validated angiogenesis and lipid metabolism as important functions regulated by PPARß/ö in this context. In the third chapter, we demonstrate that PPARß/5 knockout mice have decreased cutaneous squamous cell carcinomas incidence compared to wild type mice and that PPARß/5 directly activates the cSrc kinase gene. In the last chapter, we review novel insights into PPAR functions in keratinocytes and liver, with emphasis on PPARß/ö but also on PPARa. In summary, this PhD study shows that i) PPARß/5 is able to regulate biological function through regulation of miRNAs, and specifically through miR-21-3p, the passenger miRNA of the oncomiR miR-21, and that ii) the PPARß/5-dependent skin response to UV involves the regulation of angiogenesis and lipid metabolism. Furthermore, the bioinformatics study highlights the relevance of performing integrated mRNA and miRNA genome-wide studies in order to better screen mRNAs and/or miRNAs of interest in the biological context of diseases. - Des études préalables dans le laboratoire du Dr. Liliane Michalik ont démontré que le récepteur nucléaire PPARß/5 est un régulateur important de l'homéostasie de la peau, étant impliqué dans la régulation de la différenciation des keratinocytes, dans l'inflammation, dans l'apoptose et dans la cicatrisation de la peau chez !a souris. L'étude de souris knock-out pour le gène PPARß/5, ont suggérées un rôle possible de ce récepteur dans le cancer. Cependant, des observations opposées ont été publiées suggérant un rôle pro- ou anti- cancer selon le tissue impliqué et le type- cellulaire. En considérant cette controverse autour du rôle de PPARß/5 dans le développement des cancers de la peau, le but principal de mon projet de recherche aura été d'approfondir l'exploration du rôle de PPARß/5 dans la réponse de la peau aux UVs et dans le développement du cancer. Cette dissertation de thèse est divisée en quatre parties. Une première partie, représentant le coeur de mon travail de recherche, décrit la découverte de l'implication des microRNAs (rniRNAs) dans la réponse aux UVs de PPARß/ö et plus spécifiquement l'implication du miRNA miR- 21 -3p (précédemment nommé miR-21*). En étudiant un modèle de souris irradiées de manière aigüe aux UVs, nous montrons que ia régulation de miR-21-3p est PPARß/ö-däpenaante et que cette régulation à lieu par l'intermédiaire du facteur de transcription TGFß-1. Dans des cultures de keratinocytes Humains, la transfecticn d'une séquence oligonucléotidique similaire à celle de miR-21-3p (mimic), montre l'implication de rniR-21-3p dans des fonctions importantes pour le développement des cancers telles que le métabolisme des lipides. Dans un second chapitre, nous montrons que l'usage d'une méthode bioinformatique combinant l'expression des ARN messagers et des miRNAs permet de mettre en évidence des fonctions biologiques importantes lors de ia réponse de PPARß/ö à l'irradiation chronique. L'angiogenèse, le stress oxydatif et le métabolisme des lipides font partie de ces fonctions régulées par PPARß/5 dans la peau irradiée aux UVs. Nous mettons également en évidence la régulation du gène LpcatS par PPARß/5 dans la peau irradiée aux UV ainsi que dans des keratinocytes humains suggérant un rôle pour PPARß/5 dans le remodelage des lipides membranaires. Dans une troisième partie, nous établissons un lien entre la régulation de l'oncogène Src et l'activation de PPARß/5 dans les carcinomes spinocellulaires de la peau. Finalement dans un quatrième chapitre, nous faisons une revue des dernières recherches portées sur le rôle de PPARß/5 et de PPARa dans le foie et ia peau. En résumé ce projet de thèse représente un avancement pour la recherche sur rimplication de PPARß/5 dans la réponse aux UVs de la peau. Pour la première fois, un lien est établi entre ce facteur de transcription et la régulation de microRNAs dans le cadre du carcinome spinocellulare. Jusqu'alors resté dans l'ombre de rniR-21-5p, miR-21-3p est en fait fortement augmenté à la fois dans un modèle de souris d'irradiation aux UVs ainsi que dans ie carcinome spinocellulare chez i'humain. De nouvelles fonctions biologiques pour PPARß/5 ont été également mises en évidence dans ce travail, comme la régulation de l'angiogenèse ou du métabolisme des lipides dans Sa peau. De plus cette dissertation valorise l'intérêt d'une association entre le travail de laboratoire et celui de la bioinformatique.
Resumo:
The phloem performs essential systemic functions in tracheophytes, yet little is known about its molecular genetic specification. Here we show that application of the peptide ligand CLAVATA3/EMBRYO SURROUNDING REGION 45 (CLE45) specifically inhibits specification of protophloem in Arabidopsis roots by locking the sieve element precursor cell in its preceding developmental state. CLE45 treatment, as well as viable transgenic expression of a weak CLE45(G6T) variant, interferes not only with commitment to sieve element fate but also with the formative sieve element precursor cell division that creates protophloem and metaphloem cell files. However, the absence of this division appears to be a secondary effect of discontinuous sieve element files and subsequent systemically reduced auxin signaling in the root meristem. In the absence of the formative sieve element precursor cell division, metaphloem identity is seemingly adopted by the normally procambial cell file instead, pointing to possibly independent positional cues for metaphloem formation. The protophloem formation and differentiation defects in brevis radix (brx) and octopus (ops) mutants are similar to those observed in transgenic seedlings with increased CLE45 activity and can be rescued by loss of function of a putative CLE45 receptor, BARELY ANY MERISTEM 3 (BAM3). Conversely, a dominant gain-of-function ops allele or mild OPS dosage increase suppresses brx defects and confers CLE45 resistance. Thus, our data suggest that delicate quantitative interplay between the opposing activities of BAM3-mediated CLE45 signals and OPS-dependent signals determines cellular commitment to protophloem sieve element fate, with OPS acting as a positive, quantitative master regulator of phloem fate.
Resumo:
BACKGROUND: The intestinal epithelium accommodates with a myriad of commensals to maintain immunological homeostasis, but the underlying mechanisms regulating epithelial responsiveness to flora-derived signals remain poorly understood. Herein, we sought to determine the role of the Toll/interleukin (IL)-1 receptor regulator Toll-interacting protein (Tollip) in intestinal homeostasis. METHODS: Colitis susceptibility was determined after oral dextran sulfate sodium (DSS) administration or by breeding Tollip on an IL-10 background. The intestinal flora was depleted with 4 antibiotics before DSS exposure to assess its contribution in colitis onset. Bone marrow chimeras were generated to identify the cellular compartment, whereby Tollip may negatively regulate intestinal inflammation in response to DSS. Tollip-dependent epithelial barrier functions were studied in vitro by using Tollip-knockdown in Caco-2 cells and in vivo by immunohistochemistry and fluorescein isothiocyanate-labeled dextran gavage. RESULTS: Genetic ablation of Tollip did not lead to spontaneous intestinal inflammatory disorders. However, Tollip deficiency aggravated spontaneous disease onset in IL-10 mice and increased susceptibility to DSS colitis. Increased colitis severity in Tollip-deficient mice was not improved by bacterial flora depletion using broad-spectrum antibiotics. In addition, DSS exposure of bone marrow chimeric mice revealed a protective role for Tollip in nonhematopoietic cells. Knockdown of Tollip in epithelial cells led to exaggerated NFκ-B activity and proinflammatory cytokine secretion. Finally, DSS-treated Tollip mice showed enhanced intestinal permeability and increased epithelial apoptosis when compared with wild-type controls, a finding that coincided with tight junction alterations on injury. CONCLUSION: Overall, our data show an essential role for Tollip on colitis susceptibility in mice.
Resumo:
Regulator of G-protein signalling (RGS) proteins negatively regulate heterotrimeric G-protein signalling through their conserved RGS domains. RGS domains act as GTPase-activating proteins, accelerating the GTP hydrolysis rate of the activated form of Gα-subunits. Although omnipresent in eukaryotes, RGS proteins have not been adequately analysed in non-mammalian organisms. The Drosophila melanogaster Gαo-subunit and the RGS domain of its interacting partner CG5036 have been overproduced and purified; the crystallization of the complex of the two proteins using PEG 4000 as a crystallizing agent and preliminary X-ray crystallographic analysis are reported. Diffraction data were collected to 2.0 Å resolution using a synchrotron-radiation source.
Resumo:
The epigenetic regulator Bmi1 controls proliferation in many organs. Reexpression of cell cycle proteins such as cyclin-dependent kinases (CDKs) is a hallmark of neuronal apoptosis in neurodegenerative diseases. Here we address the potential role of Bmi1 as a key regulator of cell cycle proteins during neuronal apoptosis. We show that several cell cycle proteins are expressed in different models of retinal degeneration and required in the Rd1 photoreceptor death process. Deleting E2f1, a downstream target of CDKs, provided temporary protection in Rd1 mice. Most importantly, genetic ablation of Bmi1 provided extensive photoreceptor survival and improvement of retinal function in Rd1 mice, mediated by a decrease in cell cycle markers and regulators independent of p16(Ink4a) and p19(Arf). These data reveal that Bmi1 controls the cell cycle-related death process, highlighting this pathway as a promising therapeutic target for neuroprotection in retinal dystrophies.
Resumo:
Wounding plant tissues initiates large-scale changes in transcription coupled to growth arrest, allowing resource diversion for defense. These processes are mediated in large part by the potent lipid regulator jasmonic acid (JA). Genes selected from a list of wound-inducible transcripts regulated by the jasmonate pathway were overexpressed in Arabidopsis thaliana, and the transgenic plants were then assayed for sensitivity to methyl jasmonate (MeJA). When grown in the presence of MeJA, the roots of plants overexpressing a gene of unknown function were longer than those of wild-type plants. When transcript levels for this gene, which we named JASMONATE-ASSOCIATED1 (JAS1), were reduced by RNA interference, the plants showed increased sensitivity to MeJA and growth was inhibited. These gain- and loss-of-function assays suggest that this gene acts as a repressor of JA-inhibited growth. An alternative transcript from the gene encoding a second protein isoform with a longer C terminus failed to repress jasmonate sensitivity. This identified a conserved C-terminal sequence in JAS1 and related genes, all of which also contain Zim motifs and many of which are jasmonate-regulated. Both forms of JAS1 were found to localize to the nucleus in transient expression assays. Physiological tests of growth responses after wounding were consistent with the fact that JAS1 is a repressor of JA-regulated growth retardation.
Resumo:
Abstract In humans, the skin is the largest organ of the body, covering up to 2m2 and weighing up to 4kg in an average adult. Its function is to preserve the body from external insults and also to retain water inside. This barrier function termed epidermal permeability barrier (EPB) is localized in the functional part of the skin: the epidermis. For this, evolution has built a complex structure of cells and lipids sealing the surface, the stratum corneum. The formation of this structure is finely tuned since it is not only formed once at birth, but renewed all life long. This active process gives a high plasticity and reactivity to skin, but also leads to various pathologies. ENaC is a sodium channel extensively studied in organs like kidney and lung due to its importance in regulating sodium homeostasis and fluid volume. It is composed of three subunits α, ß and r which are forming sodium selective channel through the cell membrane. Its presence in the skin has been demonstrated, but little is known about its physiological role. Previous work has shown that αENaC knockout mice displayed an abnormal epidermis, suggesting a role in differentiation processes that might be implicated in the EPB. The principal aim of this thesis has been to study the consequences for EPB function in mice deficient for αENaC by molecular and physiological means and to investigate the underlying molecular mechanisms. Here, the barrier function of αENaC knockout pups is impaired. Apparently not immediately after birth (permeability test) but 24h later, when evident water loss differences appeared compared to wildtypes. Neither the structural proteins of the epithelium nor the tights junctions showed any obvious alterations. In contrary, stratum corneum lipid disorders are most likely responsible for the barrier defect, accompanied by an impairment of skin surface acidification. To analyze in details this EPB defect, several hypotheses have been proposed: reduced sensibility to calcium which is the key activator far epidermal formation, or modification of ENaC-mediated ion fluxes/currents inside the epidermis. The cellular localization of ENaC and the action in the skin of CAPl, a positive regulator of ENaC, have been also studied in details. In summary, this study clearly demonstrates that ENaC is a key player in the EPB maintenance, because αENaC knockout pups are not able to adapt to the new environment (ex utero) as efficiently as the wildtypes, most likely due to impaired of sodium handling inside the epidermis. Résumé Chez l'homme, la peau est le plus grand organe, couvrant presque 2m2 et pesant près de 4kg chez l'adulte. Sa fonction principale est de protéger l'organisme des agressions extérieures mais également de conserver l'eau à l'intérieur du corps. Cette fonction nommée barrière épithéliale est localisée dans la partie fonctionnelle de la peau : l'épiderme. A cette fin, l'évolution s'est dotée d'une structure complexe composée de cellules et de lipides recouvrant la surface, la couche cornée. Sa formation est finement régulée, car elle n'est pas seulement produite à la naissance mais constamment renouvelée tout au long de la vie, ce qui lui confère une grande plasticité mais ce qui est également la cause de nombreuses pathologies. ENaC est un canal sodique très étudié dans le rein et le poumon pour son importance dans la régulation de l'homéostasie sodique et la régulation du volume du milieu intérieur. Il est composé de 3 sous unités, α, ß et y qui forment un pore sélectif pour le sodium dans les membranes. Ce canal est présent dans la peau mais sa fonction n'y est pas connue. Des travaux précédents ont pu montrer que les souris dont le gène codant pour αENaC a été invalidé présentent un épiderme pathologique, suggérant un rôle dans la différentiation et pourrait même être impliqué dans la barrière épithéliale. Le but de cette thèse fut l'étude de la barrière dans ces souris knockouts avec des méthodes moléculaires et physiologiques et la caractérisation des mécanismes moléculaire impliqués. Dans ce travail, il a été montré que les souris mutantes présentaient un défaut de la barrière. Ce défaut n'est pas visible immédiatement à la naissance (test de perméabilité), mais 24h plus tard, lorsque les tests de perte d'eau transépithéliale montrent une différence évidente avec les animaux contrôles. Ni les protéines de structures ni les jonctions serrées de l'épiderme ne présentaient d'imperfections majeures. A l'inverse, les lipides de la couche cornée présentaient un problème de maturation (expliquant le phénotype de la barrière), certainement consécutif au défaut d'acidification à la surface de la peau que nous avons observé. D'autres mécanismes ont été explorées afin d'investiguer cette anomalie de la barrière, comme la réduction de sensibilité au calcium qui est le principal activateur de la formation de l'épiderme, ou la modification des flux d'ions entre les couches de l'épiderme. La localisation cellulaire d'ENaC, et l'action de son activateur CAPl ont également été étudiés en détails. En résumé, cette étude démontre clairement qu'ENaC est un acteur important dans la formation de la barrière épithéliale, car la peau des knockouts ne s'adapte pas aussi bien que celle des sauvages au nouvel environnement ex utero à cause de la fonction d'ENaC dans les mouvements de sodium au sein même de l'épiderme. Résumé tout public Chez l'homme, la peau est le plus grand organe, couvrant presque 2m2 et pesant près de 4kg chez l'adulte. Sa fonction principale est de protéger l'organisme des agressions extérieures mais également de conserver l'eau à l'intérieur du corps. Cette fonction nommée barrière épithéliale est localisée dans la partie fonctionnelle de la peau : l'épiderme. A cette fin, l'évolution s'est dotée d'une structure complexe composée de cellules et de lipides recouvrant la surface, la couche cornée. Sa formation est finement régulée, car elle n'est pas seulement produite à la naissance mais constamment renouvelée tout au long de la vie, ce qui lui confère une grande plasticité mais ce qui est également la cause de nombreuses maladies. ENaC est une protéine formant un canal qui permet le passage sélectif de l'ion sodium à travers la paroi des cellules. Il est très étudié dans le rein pour son importance dans la récupération du sel lors de la concentration de l'urine. Ce canal est présent dans la peau mais sa fonction n'y est pas connue. Des travaux précédents ont pu montrer que les souris où le gène codant pour αENaC a été invalidé présentent un épiderme pathologique, suggérant un rôle dans la peau et plus particulièrement la fonction de barrière de l'épiderme. Le but de cette thèse fut l'étude de la fonction de barrière dans ces souris mutantes, au niveau tissulaire et cellulaire. Dans ce travail, il a été montré que les souris mutantes présentaient une peau plus perméable que celle des animaux contrôles, grâce à une machine mesurant la perte d'eau à travers la peau. Ce défaut n'est visible que 24h après la naissance, mais nous avons pu montrer que les animaux mutants perdaient quasiment 2 fois plus d'eau que les contrôles. Au niveau moléculaire, nous avons pu montrer que ce défaut provenait d'un problème de maturation des lipides qui composent la barrière de la peau. Cette maturation est incomplète vraisemblablement à cause d'un défaut de mouvement des ions dans les couches les plus superficielles de l'épiderme, et cela à cause de l'absence du canal ENaC. En résumé, cette étude démontre clairement qu'ENaC est un acteur important dans la formation de la barrière épithéliale, car la peau des mutants ne s'adapte pas aussi bien que celle des sauvages au nouvel environnement ex utero à cause de la fonction d'ENaC dans les mouvements de sodium au sein même de l'épiderme.
Resumo:
Muscle stem cells and their progeny play a fundamental role in the regeneration of adult skeletal muscle. We have previously shown that activation of the canonical Wnt/beta-catenin signaling pathway in adult myogenic progenitors is required for their transition from rapidly dividing transient amplifying cells to more differentiated progenitors. Whereas Wnt signaling in Drosophila is dependent on the presence of the co-regulator Legless, previous studies of the mammalian ortholog of Legless, BCL9 (and its homolog, BCL9-2), have not revealed an essential role of these proteins in Wnt signaling in specific tissues during development. Using Cre-lox technology to delete BCL9 and BCL9-2 in the myogenic lineage in vivo and RNAi technology to knockdown the protein levels in vitro, we show that BCL9 is required for activation of the Wnt/beta-catenin cascade in adult mammalian myogenic progenitors. We observed that the nuclear localization of beta-catenin and downstream TCF/LEF-mediated transcription, which are normally observed in myogenic progenitors upon addition of exogenous Wnt and during muscle regeneration, were abrogated when BCL9/9-2 levels were reduced. Furthermore, reductions of BCL9/9-2 inhibited the promotion of myogenic differentiation by Wnt and the normal regenerative response of skeletal muscle. These results suggest a critical role of BCL9/9-2 in the Wnt-mediated regulation of adult, as opposed to embryonic, myogenic progenitors.
Resumo:
Postsynaptic density 95 (PSD-95) is an important regulator of synaptic structure and plasticity. However, its contribution to synapse formation and organization remains unclear. Using a combined electron microscopic, genetic, and pharmacological approach, we uncover a new mechanism through which PSD-95 regulates synaptogenesis. We find that PSD-95 overexpression affected spine morphology but also promoted the formation of multiinnervated spines (MISs) contacted by up to seven presynaptic terminals. The formation of multiple contacts was specifically prevented by deletion of the PDZ(2) domain of PSD-95, which interacts with nitric oxide (NO) synthase (NOS). Similarly, PSD-95 overexpression combined with small interfering RNA-mediated down-regulation or the pharmacological blockade of NOS prevented axon differentiation into varicosities and multisynapse formation. Conversely, treatment of hippocampal slices with an NO donor or cyclic guanosine monophosphate analogue induced MISs. NOS blockade also reduced spine and synapse density in developing hippocampal cultures. These results indicate that the postsynaptic site, through an NOS-PSD-95 interaction and NO signaling, promotes synapse formation with nearby axons.
Resumo:
Background: Citrobacter rodentium is a natural mouse pathogen that is genetically closelyrelated to the human enteric pathogens enteropathogenic and enterohemorrhagic E. coli.Among the repertoire of conserved virulence factors that these pathogens deliver via typeIII secretion, Tir and EspF are responsible for the formation of characteristic actin-richpedestals and disruption of tight junction integrity, respectively. There is evidence In Vitrothese effectors accomplish this, at least in part, by subverting the normal host cellularfunctions of N-WASP, a critical regulator of branched chain actin assembly. Although NWASPhas been shown to be involved in pedestal formation In Vitro, the requirements ofN-WASP-mediated actin pedestals for intestinal colonization by attaching/effacing (A/E)pathogens In Vivo is not known. Furthermore, it is not known whether N-WASP is requiredfor EspF-mediated tight junction disruption. Methods: To investigate the role of N-WASPin the gut epithelium, we generated mice with intestine-specific deletion of N-WASP(iNWKO), by mating mice homozygous for a floxed N-WASP allele (N-WASPL2L/L2L) tomice expressing Cre recombinase under the villin promoter. Separately housed groups ofWT and iNWKO mice were inoculated with 5x108 GFP-expressing C. rodentium by intragastriclavage. Stool was collected 2, 4, 7, and 12 days after infection, and recoverablecolony forming units (CFUs) of C. rodentium were quantified by plating serial dilutions ofhomogenized stool on MacConkey's agar. GFP+ colonies were counted after 24 hoursincubation at 37°C. The presence of actin pedestals was investigated by electron microscopy(EM), and tight junction morphology was assessed by immunofluorescence staining ofoccludin, ZO-1 and claudin-2. Results: C. rodentium infection did not result in mortalityin WT or iNWKO mice. Compared to controls, iNWKO mice exhibited higher levels ofbacterial shedding during the first 4 days of infection (day 4 average: WT 5.2x104 CFU/gvs. iNWKO 4.7x105 CFU/g, p=0.08), followed by a more rapid clearance of C. rodentium, (day7-12 average: WT 2x106 CFU/g vs. iNWKO 2.7x105, p=0.01). EM and immunofluorescencerevealed the complete lack of actin pedestals in iNWKO mice and no mucosa-associatedGFP+ C. rodentium by day 7. WT controls exhibited tight junction disruption, reflected byaltered distribution of ZO-1, whereas iNWKO mice had no change in the pattern of ZO-1.Conclusion: Intestinal N-WASP is required for actin pedestal formation by C. rodentium InVivo, and ablation of N-WASP is associated with more rapid bacterial clearance and decreasedability of C. rodentium to disrupt intercellular junctions.
Resumo:
Lipin 1 is a coregulator of DNA-bound transcription factors and a phosphatidic acid (PA) phosphatase (PAP) enzyme that catalyzes a critical step in the synthesis of glycerophospholipids. Lipin 1 is highly expressed in adipocytes, and constitutive loss of lipin 1 blocks adipocyte differentiation; however, the effects of Lpin1 deficiency in differentiated adipocytes are unknown. Here we report that adipocyte-specific Lpin1 gene recombination unexpectedly resulted in expression of a truncated lipin 1 protein lacking PAP activity but retaining transcriptional regulatory function. Loss of lipin 1-mediated PAP activity in adipocytes led to reduced glyceride synthesis and increased PA content. Characterization of the deficient mice also revealed that lipin 1 normally modulates cAMP-dependent signaling through protein kinase A to control lipolysis by metabolizing PA, which is an allosteric activator of phosphodiesterase 4 and the molecular target of rapamycin. Consistent with these findings, lipin 1 expression was significantly related to adipose tissue lipolytic rates and protein kinase A signaling in adipose tissue of obese human subjects. Taken together, our findings identify lipin 1 as a reciprocal regulator of triglyceride synthesis and hydrolysis in adipocytes, and suggest that regulation of lipolysis by lipin 1 is mediated by PA-dependent modulation of phosphodiesterase 4.
Resumo:
BACKGROUND AND AIMS: Sustained adipose activation of the transcriptional activators cAMP response binding proteins (CREB) in obesity leads to impaired expression of the glucose transporter GLUT4 and adiponectin (adipoq) in mice model of obesity. Diminution of GLUT4 and adipoq caused by CREB is indirect and relies on the increased repressive activity of the CREB target gene activating transcription factor 3 (ATF3). Specific inactivation of CREB in adipocytes decreases ATF3 production and improves whole-body insulin sensitivity of mice in the context of diet-induced obesity. Thus, elevation of CREB activity is a key mechanism responsible for adipocyte dysfunction and systemic insulin resistance. The inducible cAMP early repressor (ICER) is a negative regulator of the CREB activity. In fact, ICER antagonizes the CREB factor by competing for the regulation of similar target genes. The goal of the study was to investigate whether loss of ICER expression in adipocytes could be responsible for increased CREB activity in obesity. MATERIALS AND METHODS: Mice C57bl6 were fed with a high fat diet (HFD) for 12 weeks to increase body weight and generate insulin resistance. Biopsies of visceral adipose tissues (VAT) were prepared from human lean (BMI=24}0.5 Kg/m2) or obese subjects (BMI>35 Kg/m2). Total RNA and protein were prepared from white adipose tissues (WAT) of chow- or HFD-fed mice and VAT of lean and obese subjects. Activities of CREBs and ICER were monitored by electromobility shift assays (EMSA). The role of ICER on CREB activity was confirmed in 3T3-L1 adipocytes cells. Briefly after differentiation, the cells were electroporated with the plasmid coding for ICER cDNA. Gene expression was quantified by quantitative real-time PCR and western Blotting experiments. RESULTS: The expression of ICER is reduced in WAT of HFD-induced obese mice when compared to chow mice as measured by real-time PCR and EMSA. Similar result was found in human tissues. Reduction in ICER expression was associated with increased ATF3 expression and decreased adipoq and GLUT4 contents. Diminution in ICER levels was observed in adipocytes fraction whereas its expression was unchanged in stroma vascular fraction of WAT. Overexpression of ICER in 3T3-L1 adipocytes silenced the expression of ATF3, confirming the regulation of the factor by ICER. The expression of ICER is regulated by histone deacetylases activity (HDAC). Inhibition of HDACs in 3T3-L1 adipocytes cells using trichostatin inhibited the production of ICER. The whole activity of HDAC was reduced in WAT and VAT of obese mice and human obese subjects. CONCLUSION: Impaired adipose expression of ICER is responsible of increased CREB activity in adipocytes in obesity. This mechanism relies on reduction of the HDAC activity.
Resumo:
La douleur neuropathique est une forme de douleur chronique apparaissant suite à des lésions du système nerveux somato-sensoriel. Caractérisée par une plasticité neuronale inadapté, elle est très souvent intense, invalidante, associe des symptômes comme l'allodynie ou l' hyperalgésie et reste difficile à traiter avec les agents thérapeutiques actuels. Le thème de mon travail de thèse se concentre sur des mécanismes moléculaires de modulation des canaux sodiques voltage-dépendants suite à une lésion du nerf périphérique. Dans l'article présenté en annexe, j'ai focalisé mon travail sur une protéine, Nedd4-2, qui est une ligase ubiquitine. Elle a pour rôle de réguler et d'internaliser dans la cellule des protéines membranaires dont les canaux sodiques. Suite aux lésions du système nerveux périphérique, il existe une hyperexcitabilité neuronale engendrée notamment par un surplus et une dysrégulation des canaux sodiques à la membrane cellulaire. Dans 1 'hypothèse que l'ubiquitine ligase Nedd4-2 soit présente dans les neurones sensitifs primaires et ait un rôle dans la régulation des canaux sodiques, nous avons identifié cette protéine dans les neurones nociceptifs primaires du rat. En utilisant des techniques de Western Blot et d'immunohistochimie, j'ai trouvé que Nedd4-2 est présente dans presque 50% des neurones du ganglion spinal et ces neurones sont principalement des neurones nociceptifs. Dans un modèle expérimental de douleur neuropathique (SN I, pour spared nerve injury), Nedd4-2 se retrouve significativement diminuée dans le tissu du ganglion spinal. J'ai également investigué 1' expression de 2 isoformes des canaux sodiques connues pour leur implication dans la douleur, Navl.7 et Navl.8, et ces 2 isoformes se retrouvent dans les mêmes neurones que Nedd4-2. La caractérisation détaillée est décrite dans le manuscrit: «Neuronal expression of the ubiquitin ligase Nedd4-2 in rat dorsal root ganglia: modulation in the SNI model of neuropathic pain; Cachemaille M, Laedermann CJ, Pertin M, Abriel H, Gasselin RD, Decosterd 1.» Les résultats obtenus indiquent que Nedd4-2, en étant downrégulé après une lésion nerveuse, pourrait ainsi contribuer à une augmentation des canaux sodiques fonctionnels à la membrane. Ainsi Nedd4-2 pourrait être proposée comme cible thérapeutique de manière alternative aux bloqueurs de canaux sodiques. Ce travail a permis l'initiation d'autres expériences. J'ai contribué activement à la construction de vecteurs viraux type adéno-associé recombinant (rAA V2/6) et surexprimé la protéine in vivo dans les ganglions spinaux. Cette partie de mon travail se trouve intégrée dans d'autres travaux de mon laboratoire d'accueil qui a pu démontrer les effets fonctionnels de cette approche sur les courants sodiques enregistrés par électrophysiologie et une diminution de la douleur neuropathique chez la souris. - Abstract-Neuronal hyperexcitability following peripheral nerve lesions may stem from altered activity of voltagegated sodium channels (VGSCs), which gives rise toallodynia or hyperalgesia. In vitro, the ubiquitin ligase Nedd4-2 is a negative regulator of VGSC a-subunits (Nav), in particular Nav1.7, a key actor in nociceptor excitability. We therefore studied Nedd4-2 in rat nociceptors, its co-expression with Nav1.7 and Nav1.8, and its regulation in pathology. Adult rats were submitted to the spared nerve injury (SNI) model of neuropathic pain or injected with complete Freund's adjuvant (CFA), a model of inflammatory pain. L4 dorsal root ganglia (DRG) were analyzed in shamoperated animals, seven days after SNI and 48 h after CFA with immunofluorescence and Western blot. We observed Nedd4-2 expression in almost 50% of DRG neurons, mostly small and medium-sized. A preponderant localization is found in the non-peptidergic sub-population. Additionally, 55.7± 2.7% and 55.0 ±3.6% of Nedd4-2-positive cells are co-labeled with Nav1.7 and Nav1.8 respectively. SNI significantly decreases the proportion of Nedd4-2-positive neurons from 45.9± 1.9% to 33.5± 0.7% (p < 0.01) and the total Nedd4-2 protein to 44%± 0.13% of its basal level (p <0.01, n = 4 animals in each group, mean± SEM). In contrast, no change in Nedd4-2 was found after peripheral inflammation induced by CFA. These results indicate that Nedd4-2 is present in nociceptive neurons, is downregulated after peripheral nerve injury, and might therefore contribute to the dysregulation of Navs involved in the hyperexcitability associated with peripheral nerve injuries.
Exploring the rate-limiting steps in visual phototransduction recovery by bottom-up kinetic modeling
Resumo:
Phototransduction in vertebrate photoreceptor cells represents a paradigm of signaling pathways mediated by G-protein-coupled receptors (GPCRs), which share common modules linking the initiation of the cascade to the final response of the cell. In this work, we focused on the recovery phase of the visual photoresponse, which is comprised of several interacting mechanisms. We employed current biochemical knowledge to investigate the response mechanisms of a comprehensive model of the visual phototransduction pathway. In particular, we have improved the model by implementing a more detailed representation of the recoverin (Rec)-mediated calcium feedback on rhodopsin kinase and including a dynamic arrestin (Arr) oligomerization mechanism. The model was successfully employed to investigate the rate limiting steps in the recovery of the rod photoreceptor cell after illumination. Simulation of experimental conditions in which the expression levels of rhodospin kinase (RK), of the regulator of the G-protein signaling (RGS), of Arr and of Rec were altered individually or in combination revealed severe kinetic constraints to the dynamics of the overall network. Our simulations confirm that RGS-mediated effector shutdown is the rate-limiting step in the recovery of the photoreceptor and show that the dynamic formation and dissociation of Arr homodimers and homotetramers at different light intensities significantly affect the timing of rhodopsin shutdown. The transition of Arr from its oligomeric storage forms to its monomeric form serves to temper its availability in the functional state. Our results may explain the puzzling evidence that overexpressing RK does not influence the saturation time of rod cells at bright light stimuli. The approach presented here could be extended to the study of other GPCR signaling pathways.