999 resultados para Quantum gauge bosons
Resumo:
A feasible scheme for constructing quantum logic gates is proposed on the basis of quantum switches in cavity QED. It is shown that the light field which is fed into the cavity due to the passage of an atom in a certain state can be used to manipulate the conditioned quantum logical gate. In our scheme, the quantum information is encoded in the states of Rydberg atoms and the cavity mode is not used as logical qubits or as a communicating "bus"; thus, the effect of atomic spontaneous emission can be neglected and the strict requirements for the cavity can be relaxed.
Resumo:
The 0.2% experimental accuracy of the 1968 Beers and Hughes measurement of the annihilation lifetime of ortho-positronium motivates the attempt to compute the first order quantum electrodynamic corrections to this lifetime. The theoretical problems arising in this computation are here studied in detail up to the point of preparing the necessary computer programs and using them to carry out some of the less demanding steps -- but the computation has not yet been completed. Analytic evaluation of the contributing Feynman diagrams is superior to numerical evaluation, and for this process can be carried out with the aid of the Reduce algebra manipulation computer program.
The relation of the positronium decay rate to the electronpositron annihilation-in-flight amplitude is derived in detail, and it is shown that at threshold annihilation-in-flight, Coulomb divergences appear while infrared divergences vanish. The threshold Coulomb divergences in the amplitude cancel against like divergences in the modulating continuum wave function.
Using the lowest order diagrams of electron-positron annihilation into three photons as a test case, various pitfalls of computer algebraic manipulation are discussed along with ways of avoiding them. The computer manipulation of artificial polynomial expressions is preferable to the direct treatment of rational expressions, even though redundant variables may have to be introduced.
Special properties of the contributing Feynman diagrams are discussed, including the need to restore gauge invariance to the sum of the virtual photon-photon scattering box diagrams by means of a finite subtraction.
A systematic approach to the Feynman-Brown method of Decomposition of single loop diagram integrals with spin-related tensor numerators is developed in detail. This approach allows the Feynman-Brown method to be straightforwardly programmed in the Reduce algebra manipulation language.
The fundamental integrals needed in the wake of the application of the Feynman-Brown decomposition are exhibited and the methods which were used to evaluate them -- primarily dis persion techniques are briefly discussed.
Finally, it is pointed out that while the techniques discussed have permitted the computation of a fair number of the simpler integrals and diagrams contributing to the first order correction of the ortho-positronium annihilation rate, further progress with the more complicated diagrams and with the evaluation of traces is heavily contingent on obtaining access to adequate computer time and core capacity.
Resumo:
To attempt to control the quantum state of a physical system with a femtosecond two-colour laser field, a model for the two-level system is analysed as a first step. We investigate the coherent control of the two-colour laser pulses propagating in a two-level medium. Based on calculating the influence of the laser field with various laser parameters on the electron dynamics, it is found the electronic state can be changed up and down by choosing the appropriate laser pulses and the coherent control of the two-colour laser pulses can substantially modify the behaviour of the electronic dynamics: a quicker change of two states can be produced even for small pulse duration. Moreover, the oscillatory structures around the resonant frequency and the propagation features of the laser pulses depend sensitively on the relative phase of the two-colour laser pulses. Finally, the influence of a finite lifetime of the upper level is discussed in brief.
Resumo:
We propose an asymmetric double AlGaAs/GaAs quantum well structure with a common continuum to generate a large cross-phase modulation (XPM). It is found, owing to resonant tunneling, that a large XPM can be achieved with vanishing linear and two-photon absorptions. (c) 2007 Optical Society of America.
Resumo:
In this paper, we present a scheme for implementing the unconventional geometric two-qubit phase gate with nonzero dynamical phase based on two-channel Raman interaction of two atoms in a cavity. We show that the dynamical phase and the total phase for a cyclic evolution are proportional to the geometric phase in the same cyclic evolution; hence they possess the same geometric features as does the geometric phase. In our scheme, the atomic excited state is adiabatically eliminated, and the operation of the proposed logic gate involves only the metastable states of the atoms; thus the effect of the atomic spontaneous emission can be neglected. The influence of the cavity decay on our scheme is examined. It is found that the relations regarding the dynamical phase, the total phase, and the geometric phase in the ideal situation are still valid in the case of weak cavity decay. Feasibility and the effect of the phase fluctuations of the driving laser fields are also discussed.
Resumo:
We theoretically show that selection of a single quantum path in high-order harmonics generation can be realized in a few-optical-cycle regime with two-color schemes. We also demonstrate, in theory as well, the generation of spectrally smooth and ultrabroad extreme ultraviolet supercontinuum in argon gas which can produce single similar to 79 as pulses with currently available ultrafast laser sources. Our finding can be beneficial for generating isolated sub-100 as extreme ultraviolet pulses.
Resumo:
The linear and nonlinear optical absorptions considering the weak-coupling electron-LO-phonon interaction in asymmetrical semiparabolic quantum wells are theoretically investigated. The numerical results for the typical GaAs/AlxGa1-xAs material show that the factors of Al content x, the relaxation time and the photon energy have great influence on the optical absorption coefficients. Moreover, the theoretical values of the optical absorptions are more than a factor of 2-3 higher than the one in the structure without considering the electron-LO-phonon interaction by calculating. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Accurate simulation of quantum dynamics in complex systems poses a fundamental theoretical challenge with immediate application to problems in biological catalysis, charge transfer, and solar energy conversion. The varied length- and timescales that characterize these kinds of processes necessitate development of novel simulation methodology that can both accurately evolve the coupled quantum and classical degrees of freedom and also be easily applicable to large, complex systems. In the following dissertation, the problems of quantum dynamics in complex systems are explored through direct simulation using path-integral methods as well as application of state-of-the-art analytical rate theories.
Resumo:
How powerful are Quantum Computers? Despite the prevailing belief that Quantum Computers are more powerful than their classical counterparts, this remains a conjecture backed by little formal evidence. Shor's famous factoring algorithm [Shor97] gives an example of a problem that can be solved efficiently on a quantum computer with no known efficient classical algorithm. Factoring, however, is unlikely to be NP-Hard, meaning that few unexpected formal consequences would arise, should such a classical algorithm be discovered. Could it then be the case that any quantum algorithm can be simulated efficiently classically? Likewise, could it be the case that Quantum Computers can quickly solve problems much harder than factoring? If so, where does this power come from, and what classical computational resources do we need to solve the hardest problems for which there exist efficient quantum algorithms?
We make progress toward understanding these questions through studying the relationship between classical nondeterminism and quantum computing. In particular, is there a problem that can be solved efficiently on a Quantum Computer that cannot be efficiently solved using nondeterminism? In this thesis we address this problem from the perspective of sampling problems. Namely, we give evidence that approximately sampling the Quantum Fourier Transform of an efficiently computable function, while easy quantumly, is hard for any classical machine in the Polynomial Time Hierarchy. In particular, we prove the existence of a class of distributions that can be sampled efficiently by a Quantum Computer, that likely cannot be approximately sampled in randomized polynomial time with an oracle for the Polynomial Time Hierarchy.
Our work complements and generalizes the evidence given in Aaronson and Arkhipov's work [AA2013] where a different distribution with the same computational properties was given. Our result is more general than theirs, but requires a more powerful quantum sampler.
Resumo:
The superspace approach provides a manifestly supersymmetric formulation of supersymmetric theories. For N= 1 supersymmetry one can use either constrained or unconstrained superfields for such a formulation. Only the unconstrained formulation is suitable for quantum calculations. Until now, all interacting N>1 theories have been written using constrained superfields. No solutions of the nonlinear constraint equations were known.
In this work, we first review the superspace approach and its relation to conventional component methods. The difference between constrained and unconstrained formulations is explained, and the origin of the nonlinear constraints in supersymmetric gauge theories is discussed. It is then shown that these nonlinear constraint equations can be solved by transforming them into linear equations. The method is shown to work for N=1 Yang-Mills theory in four dimensions.
N=2 Yang-Mills theory is formulated in constrained form in six-dimensional superspace, which can be dimensionally reduced to four-dimensional N=2 extended superspace. We construct a superfield calculus for six-dimensional superspace, and show that known matter multiplets can be described very simply. Our method for solving constraints is then applied to the constrained N=2 Yang-Mills theory, and we obtain an explicit solution in terms of an unconstrained superfield. The solution of the constraints can easily be expanded in powers of the unconstrained superfield, and a similar expansion of the action is also given. A background-field expansion is provided for any gauge theory in which the constraints can be solved by our methods. Some implications of this for superspace gauge theories are briefly discussed.
Resumo:
Close to equilibrium, a normal Bose or Fermi fluid can be described by an exact kinetic equation whose kernel is nonlocal in space and time. The general expression derived for the kernel is evaluated to second order in the interparticle potential. The result is a wavevector- and frequency-dependent generalization of the linear Uehling-Uhlenbeck kernel with the Born approximation cross section.
The theory is formulated in terms of second-quantized phase space operators whose equilibrium averages are the n-particle Wigner distribution functions. Convenient expressions for the commutators and anticommutators of the phase space operators are obtained. The two-particle equilibrium distribution function is analyzed in terms of momentum-dependent quantum generalizations of the classical pair distribution function h(k) and direct correlation function c(k). The kinetic equation is presented as the equation of motion of a two -particle correlation function, the phase space density-density anticommutator, and is derived by a formal closure of the quantum BBGKY hierarchy. An alternative derivation using a projection operator is also given. It is shown that the method used for approximating the kernel by a second order expansion preserves all the sum rules to the same order, and that the second-order kernel satisfies the appropriate positivity and symmetry conditions.
Resumo:
This work reports investigations upon weakly superconducting proximity effect bridges. These bridges, which exhibit the Josephson effects, are produced by bisecting a superconductor with a short (<1µ) region of material whose superconducting transition temperature is below that of the adjacent superconductors. These bridges are fabricated from layered refractory metal thin films whose transition temperature will depend upon the thickness ratio of the materials involved. The thickness ratio is changed in the area of the bridge to lower its transition temperature. This is done through novel photolithographic techniques described in the text, Chapter 2.
If two such proximity effect bridges are connected in parallel, they form a quantum interferometer. The maximum zero voltage current through this circuit is periodically modulated by the magnetic flux through the circuit. At a constant bias current, the modulation of the critical current produces a modulation in the dc voltage across the bridge. This change in dc voltage has been found to be the result of a change in the internal dissipation in the device. A simple model using lumped circuit theory and treating the bridges as quantum oscillators of frequency ω = 2eV/h, where V is the time average voltage across the device, has been found to adequately describe the observed voltage modulation.
The quantum interferometers have been converted to a galvanometer through the inclusion of an integral thin film current path which couples magnetic flux through the interferometer. Thus a change in signal current produces a change in the voltage across the interferometer at a constant bias current. This work is described in Chapter 3 of the text.
The sensitivity of any device incorporating proximity effect bridges will ultimately be determined by the fluctuations in their electrical parameters. He have measured the spectral power density of the voltage fluctuations in proximity effect bridges using a room temperature electronics and a liquid helium temperature transformer to match the very low (~ 0.1 Ω) impedances characteristic of these devices.
We find the voltage noise to agree quite well with that predicted by phonon noise in the normal conduction through the bridge plus a contribution from the superconducting pair current through the bridge which is proportional to the ratios of this current to the time average voltage across the bridge. The total voltage fluctuations are given by <V^2(f ) > = 4kTR^2_d I/V where R_d is the dynamic resistance, I the total current, and V the voltage across the bridge . An additional noise source appears with a strong 1/f^(n) dependence , 1.5 < n < 2, if the bridges are fabricated upon a glass substrate. This excess noise, attributed to thermodynamic temperature fluctuations in the volume of the bridge, increases dramatically on a glass substrate due to the greatly diminished thermal diffusivity of the glass as compared to sapphire.