999 resultados para Quantum Computer
Resumo:
The excitation energy transfer between chlorophylls in major and minor antenna complexes of photosystem II (PSII) was investigated using quantum Fourier transforms. These transforms have an important role in the efficiency of quantum algorithms of quantum computers. The equation 2n=N was used to make the connection between excitation energy transfers using quantum Fourier transform, where n is the number of qubits required for simulation of transfers and N is the number of chlorophylls in the antenna complexes.
Resumo:
The atomic shell structure can be observed by inspecting the experimental periodic properties of the Periodic Table. The (quantum) shell structure emerges from these properties and in this way quantum mechanics can be explicitly shown considering the (semi-)quantitative periodic properties. These periodic properties can be obtained with a simple effective Bohr model. An effective Bohr model with an effective quantum defect (u) was considered as a probe in order to show the quantum structure embedded in the Periodic Table. u(Z) shows a quasi-smoothed dependence of Z, i.e., u(Z) ≈ Z2/5 - 1.
Resumo:
In this work, we studied the reactivity of picloram in the aqueous phase at the B3LYP/6-311++G(2d,2p) and MP2/6-311++G(2d,2p) levels of theory through global and local reactivity descriptors. The results obtained at the MP2 level indicate that the cationic form of picloram exhibits the highest hardness while the anionic form is the most nucleophilic. From the Fukui function values, the most reactive site for electrophilic and free radical attacks are on the nitrogen in the pyridine ring. The more reactive sites for nucleophilic attacks are located on the nitrogen atom of the amide group and on the carbon atoms located at positions 2 and 3 in the pyridine ring.
Resumo:
Virtual screening is a central technique in drug discovery today. Millions of molecules can be tested in silico with the aim to only select the most promising and test them experimentally. The topic of this thesis is ligand-based virtual screening tools which take existing active molecules as starting point for finding new drug candidates. One goal of this thesis was to build a model that gives the probability that two molecules are biologically similar as function of one or more chemical similarity scores. Another important goal was to evaluate how well different ligand-based virtual screening tools are able to distinguish active molecules from inactives. One more criterion set for the virtual screening tools was their applicability in scaffold-hopping, i.e. finding new active chemotypes. In the first part of the work, a link was defined between the abstract chemical similarity score given by a screening tool and the probability that the two molecules are biologically similar. These results help to decide objectively which virtual screening hits to test experimentally. The work also resulted in a new type of data fusion method when using two or more tools. In the second part, five ligand-based virtual screening tools were evaluated and their performance was found to be generally poor. Three reasons for this were proposed: false negatives in the benchmark sets, active molecules that do not share the binding mode, and activity cliffs. In the third part of the study, a novel visualization and quantification method is presented for evaluation of the scaffold-hopping ability of virtual screening tools.
Resumo:
This Master's thesis is devoted to semiconductor samples study using time-resolved photoluminescence. This method allows investigating recombination in semiconductor samples in order to develop quality of optoelectronic device. An additional goal was the method accommodation for low-energy-gap materials. The first chapter gives a brief intercourse into the basis of semiconductor physics. The key features of the investigated structures are noted. The usage area of the results covers saturable semiconductor absorber mirrors, disk lasers and vertical-external-cavity surface-emittinglasers. The experiment set-up is described in the second chapter. It is based on up-conversion procedure using a nonlinear crystal and involving the photoluminescent emission and the gate pulses. The limitation of the method was estimated. The first series of studied samples were grown at various temperatures and they suffered rapid thermal annealing. Further, a latticematched and metamorphically grown samples were compared. Time-resolved photoluminescence method was adapted for wavelengths up to 1.5 µm. The results allowed to specify the optimal substrate temperature for MBE process. It was found that the lattice-matched sample and the metamorphically grown sample had similar characteristics.
Resumo:
In this Thesis I discuss the exact dynamics of simple non-Markovian systems. I focus on fundamental questions at the core of non-Markovian theory and investigate the dynamics of quantum correlations under non-Markovian decoherence. In the first context I present the connection between two different non-Markovian approaches, and compare two distinct definitions of non-Markovianity. The general aim is to characterize in exemplary cases which part of the environment is responsible for the feedback of information typical of non- Markovian dynamics. I also show how such a feedback of information is not always described by certain types of master equations commonly used to tackle non-Markovian dynamics. In the second context I characterize the dynamics of two qubits in a common non-Markovian reservoir, and introduce a new dynamical effect in a wellknown model, i.e., two qubits under depolarizing channels. In the first model the exact solution of the dynamics is found, and the entanglement behavior is extensively studied. The non-Markovianity of the reservoir and reservoirmediated-interaction between the qubits cause non-trivial dynamical features. The dynamical interplay between different types of correlations is also investigated. In the second model the study of quantum and classical correlations demonstrates the existence of a new effect: the sudden transition between classical and quantum decoherence. This phenomenon involves the complete preservation of the initial quantum correlations for long intervals of time of the order of the relaxation time of the system.
Resumo:
In this thesis, a computer software for defining the geometry for a centrifugal compressor impeller is designed and implemented. The project is done under the supervision of Laboratory of Fluid Dynamics in Lappeenranta University of Technology. This thesis is similar to the thesis written by Tomi Putus (2009) in which a centrifugal compressor impeller flow channel is researched and commonly used design practices are reviewed. Putus wrote a computer software which can be used to define impeller’s three-dimensional geometry based on the basic geometrical dimensions given by a preliminary design. The software designed in this thesis is almost similar but it uses a different programming language (C++) and a different way to define the shape of the impeller meridional projection.
Resumo:
The aim of this study is to analyse the content of the interdisciplinary conversations in Göttingen between 1949 and 1961. The task is to compare models for describing reality presented by quantum physicists and theologians. Descriptions of reality indifferent disciplines are conditioned by the development of the concept of reality in philosophy, physics and theology. Our basic problem is stated in the question: How is it possible for the intramental image to match the external object?Cartesian knowledge presupposes clear and distinct ideas in the mind prior to observation resulting in a true correspondence between the observed object and the cogitative observing subject. The Kantian synthesis between rationalism and empiricism emphasises an extended character of representation. The human mind is not a passive receiver of external information, but is actively construing intramental representations of external reality in the epistemological process. Heidegger's aim was to reach a more primordial mode of understanding reality than what is possible in the Cartesian Subject-Object distinction. In Heidegger's philosophy, ontology as being-in-the-world is prior to knowledge concerning being. Ontology can be grasped only in the totality of being (Dasein), not only as an object of reflection and perception. According to Bohr, quantum mechanics introduces an irreducible loss in representation, which classically understood is a deficiency in knowledge. The conflicting aspects (particle and wave pictures) in our comprehension of physical reality, cannot be completely accommodated into an entire and coherent model of reality. What Bohr rejects is not realism, but the classical Einsteinian version of it. By the use of complementary descriptions, Bohr tries to save a fundamentally realistic position. The fundamental question in Barthian theology is the problem of God as an object of theological discourse. Dialectics is Barth¿s way to express knowledge of God avoiding a speculative theology and a human-centred religious self-consciousness. In Barthian theology, the human capacity for knowledge, independently of revelation, is insufficient to comprehend the being of God. Our knowledge of God is real knowledge in revelation and our words are made to correspond with the divine reality in an analogy of faith. The point of the Bultmannian demythologising programme was to claim the real existence of God beyond our faculties. We cannot simply define God as a human ideal of existence or a focus of values. The theological programme of Bultmann emphasised the notion that we can talk meaningfully of God only insofar as we have existential experience of his intervention. Common to all these twentieth century philosophical, physical and theological positions, is a form of anti-Cartesianism. Consequently, in regard to their epistemology, they can be labelled antirealist. This common insight also made it possible to find a common meeting point between the different disciplines. In this study, the different standpoints from all three areas and the conversations in Göttingen are analysed in the frameworkof realism/antirealism. One of the first tasks in the Göttingen conversations was to analyse the nature of the likeness between the complementary structures inquantum physics introduced by Niels Bohr and the dialectical forms in the Barthian doctrine of God. The reaction against epistemological Cartesianism, metaphysics of substance and deterministic description of reality was the common point of departure for theologians and physicists in the Göttingen discussions. In his complementarity, Bohr anticipated the crossing of traditional epistemic boundaries and the generalisation of epistemological strategies by introducing interpretative procedures across various disciplines.
Resumo:
ABSTRACTThis study presents a contribution to the modeling of a computer application employing a method of serviceability performance for unpaved roads, aiming the management of maintenance/restoration activities of the primary surface layer. The proposed methodology consisted of field inspections during dry (April to September) and rainy (October to March) periods, during which objective evaluations were performed to survey of defects and their densities and degrees of severity. To aid the functional classification of analyzed road sections and the determination of the defect with major influence on the serviceability of these roads, the method of serviceability performance proposed by Silva (2009)was implemented in the Visual Basic for Applications (VBA) language in Microsoft Excel software. With the use of the computer application proposed it was possible to identify among the defects analyzed in field, through the index of serviceability of the sampling unit per defect type (ISUdef), which one had the greatest influence on determining the relative serviceability index per road section (IST). The results allow us to conclude that the computer application Road achieved satisfactory results, since the objective evaluation criteria applied to road sections denotes consistency regarding their serviceability.
Resumo:
The present manuscript represents the completion of a research path carried forward during my doctoral studies in the University of Turku. It contains information regarding my scientific contribution to the field of open quantum systems, accomplished in collaboration with other scientists. The main subject investigated in the thesis is the non-Markovian dynamics of open quantum systems with focus on continuous variable quantum channels, e.g. quantum Brownian motion models. Non-Markovianity is here interpreted as a manifestation of the existence of a flow of information exchanged by the system and environment during the dynamical evolution. While in Markovian systems the flow is unidirectional, i.e. from the system to the environment, in non-Markovian systems there are time windows in which the flow is reversed and the quantum state of the system may regain coherence and correlations previously lost. Signatures of a non-Markovian behavior have been studied in connection with the dynamics of quantum correlations like entanglement or quantum discord. Moreover, in the attempt to recognisee non-Markovianity as a resource for quantum technologies, it is proposed, for the first time, to consider its effects in practical quantum key distribution protocols. It has been proven that security of coherent state protocols can be enhanced using non-Markovian properties of the transmission channels. The thesis is divided in two parts: in the first part I introduce the reader to the world of continuous variable open quantum systems and non-Markovian dynamics. The second part instead consists of a collection of five publications inherent to the topic.
Resumo:
The simulation programs are important tools to analyze the different energetic alternatives, including the use of renewable energy. The objective of this study was to analyze comparatively the different computer tools available for modeling of solar water heaters. Among the main simulation software of solar thermal systems, there are: RETScreen International, EnergyPlus, TRNSYS, SolDesigner, SolarPro, e T*SOL. Among the tools mentioned, only EnergyPlus and RETScreen International are free, but they allow obtaining interesting results when applied together. The first one has a detailed module of energy analysis of solar water heaters, while the second one provides an detailed economic feasibility study and an assessment of emissions of greenhouse gases. RETScreen International and EnergyPlus programs are aimed at a diverse audience, including designers, researchers and energy planners.
Resumo:
In this Thesis I discuss the dynamics of the quantum Brownian motion model in harmonic potential. This paradigmatic model has an exact solution, making it possible to consider also analytically the non-Markovian dynamics. The issues covered in this Thesis are themed around decoherence. First, I consider decoherence as the mediator of quantum-to-classical transition. I examine five different definitions for nonclassicality of quantum states, and show how each definition gives qualitatively different times for the onset of classicality. In particular I have found that all characterizations of nonclassicality, apart from one based on the interference term in the Wigner function, result in a finite, rather than asymptotic, time for the emergence of classicality. Second, I examine the diverse effects which coupling to a non-Markovian, structured reservoir, has on our system. By comparing different types of Ohmic reservoirs, I derive some general conclusions on the role of the reservoir spectrum in both the short-time and the thermalization dynamics. Finally, I apply these results to two schemes for decoherence control. Both of the methods are based on the non-Markovian properties of the dynamics.
Resumo:
This thesis addresses the use of covariant phase space observables in quantum tomography. Necessary and sufficient conditions for the informational completeness of covariant phase space observables are proved, and some state reconstruction formulae are derived. Different measurement schemes for measuring phase space observables are considered. Special emphasis is given to the quantum optical eight-port homodyne detection scheme and, in particular, on the effect of non-unit detector efficiencies on the measured observable. It is shown that the informational completeness of the observable does not depend on the efficiencies. As a related problem, the possibility of reconstructing the position and momentum distributions from the marginal statistics of a phase space observable is considered. It is shown that informational completeness for the phase space observable is neither necessary nor sufficient for this procedure. Two methods for determining the distributions from the marginal statistics are presented. Finally, two alternative methods for determining the state are considered. Some of their shortcomings when compared to the phase space method are discussed.