987 resultados para QUANTUM-WELL WIRES
Resumo:
Much of the work currently occurring in the field of Quantum Interaction (QI) relies upon Projective Measurement. This is perhaps not optimal, cognitive states are not nearly as well behaved as standard quantum mechanical systems; they exhibit violations of repeatability, and the operators that we use to describe measurements do not appear to be naturally orthogonal in cognitive systems. Here we attempt to map the formalism of Positive Operator Valued Measure (POVM) theory into the domain of semantic memory, showing how it might be used to construct Bell-type inequalities.
Resumo:
It is now well known that in extreme quantum limit, dominated by the elastic impurity scattering and the concomitant quantum interference, the zero-temperature d.c. resistance of a strictly one-dimensional disordered system is non-additive and non-self-averaging. While these statistical fluctuations may persist in the case of a physically thin wire, they are implicitly and questionably ignored in higher dimensions. In this work, we have re-examined this question. Following an invariant imbedding formulation, we first derive a stochastic differential equation for the complex amplitude reflection coefficient and hence obtain a Fokker-Planck equation for the full probability distribution of resistance for a one-dimensional continuum with a Gaussian white-noise random potential. We then employ the Migdal-Kadanoff type bond moving procedure and derive the d-dimensional generalization of the above probability distribution, or rather the associated cumulant function –‘the free energy’. For d=3, our analysis shows that the dispersion dominates the mobilitly edge phenomena in that (i) a one-parameter B-function depending on the mean conductance only does not exist, (ii) an approximate treatment gives a diffusion-correction involving the second cumulant. It is, however, not clear whether the fluctuations can render the transition at the mobility edge ‘first-order’. We also report some analytical results for the case of the one dimensional system in the presence of a finite electric fiekl. We find a cross-over from the exponential to the power-low length dependence of resistance as the field increases from zero. Also, the distribution of resistance saturates asymptotically to a poissonian form. Most of our analytical results are supported by the recent numerical simulation work reported by some authors.
Resumo:
We analyze aspects of symmetry breaking for Moyal spacetimes within a quantization scheme which preserves the twisted Poincare´ symmetry. Towards this purpose, we develop the Lehmann-Symanzik- Zimmermann (LSZ) approach for Moyal spacetimes. The latter gives a formula for scattering amplitudes on these spacetimes which can be obtained from the corresponding ones on the commutative spacetime. This formula applies in the presence of spontaneous breakdown of symmetries as well. We also derive Goldstone’s theorem on Moyal spacetime. The formalism developed here can be directly applied to the twisted standard model.
Resumo:
We present a new, generic method/model for multi-objective design optimization of laminated composite components using a novel multi-objective optimization algorithm developed on the basis of the Quantum behaved Particle Swarm Optimization (QPSO) paradigm. QPSO is a co-variant of the popular Particle Swarm Optimization (PSO) and has been developed and implemented successfully for the multi-objective design optimization of composites. The problem is formulated with multiple objectives of minimizing weight and the total cost of the composite component to achieve a specified strength. The primary optimization variables are - the number of layers, its stacking sequence (the orientation of the layers) and thickness of each layer. The classical lamination theory is utilized to determine the stresses in the component and the design is evaluated based on three failure criteria; Failure Mechanism based Failure criteria, Maximum stress failure criteria and the Tsai-Wu Failure criteria. The optimization method is validated for a number of different loading configurations - uniaxial, biaxial and bending loads. The design optimization has been carried for both variable stacking sequences as well as fixed standard stacking schemes and a comparative study of the different design configurations evolved has been presented. Also, the performance of QPSO is compared with the conventional PSO.
Resumo:
Many grand unified theories (GUT's) predict non-Abelian monopoles which are sources of non-Abelian (and Abelian) magnetic flux. In the preceding paper, we discussed in detail the topological obstructions to the global implementation of the action of the "unbroken symmetry group" H on a classical test particle in the field of such a monopole. In this paper, the existence of similar topological obstructions to the definition of H action on the fields in such a monopole sector, as well as on the states of a quantum-mechanical test particle in the presence of such fields, are shown in detail. Some subgroups of H which can be globally realized as groups of automorphisms are identified. We also discuss the application of our analysis to the SU(5) GUT and show in particular that the non-Abelian monopoles of that theory break color and electroweak symmetries.
Resumo:
We demonstrate the phenomenon stated in the title, using for illustration a two-dimensional scalar-field model with a triple-well potential {fx837-1}. At the classical level, this system supports static topological solitons with finite energy. Upon quantisation, however, these solitons develop infinite energy, which cannot be renormalised away. Thus this quantised model has no soliton sector, even though classical solitons exist. Finally when the model is extended supersymmetrically by adding a Majorana field, finiteness of the soliton energy is recovered.
Resumo:
Our present-day understanding of fundamental constituents of matter and their interactions is based on the Standard Model of particle physics, which relies on quantum gauge field theories. On the other hand, the large scale dynamical behaviour of spacetime is understood via the general theory of relativity of Einstein. The merging of these two complementary aspects of nature, quantum and gravity, is one of the greatest goals of modern fundamental physics, the achievement of which would help us understand the short-distance structure of spacetime, thus shedding light on the events in the singular states of general relativity, such as black holes and the Big Bang, where our current models of nature break down. The formulation of quantum field theories in noncommutative spacetime is an attempt to realize the idea of nonlocality at short distances, which our present understanding of these different aspects of Nature suggests, and consequently to find testable hints of the underlying quantum behaviour of spacetime. The formulation of noncommutative theories encounters various unprecedented problems, which derive from their peculiar inherent nonlocality. Arguably the most serious of these is the so-called UV/IR mixing, which makes the derivation of observable predictions especially hard by causing new tedious divergencies, to which our previous well-developed renormalization methods for quantum field theories do not apply. In the thesis I review the basic mathematical concepts of noncommutative spacetime, different formulations of quantum field theories in the context, and the theoretical understanding of UV/IR mixing. In particular, I put forward new results to be published, which show that also the theory of quantum electrodynamics in noncommutative spacetime defined via Seiberg-Witten map suffers from UV/IR mixing. Finally, I review some of the most promising ways to overcome the problem. The final solution remains a challenge for the future.
Resumo:
A simplified yet analytical approach on few ballistic properties of III-V quantum wire transistor has been presented by considering the band non-parabolicity of the electrons in accordance with Kane's energy band model using the Bohr-Sommerfeld's technique. The confinement of the electrons in the vertical and lateral directions are modeled by an infinite triangular and square well potentials respectively, giving rise to a two dimensional electron confinement. It has been shown that the quantum gate capacitance, the drain currents and the channel conductance in such systems are oscillatory functions of the applied gate and drain voltages at the strong inversion regime. The formation of subbands due to the electrical and structural quantization leads to the discreetness in the characteristics of such 1D ballistic transistors. A comparison has also been sought out between the self-consistent solution of the Poisson's-Schrodinger's equations using numerical techniques and analytical results using Bohr-Sommerfeld's method. The results as derived in this paper for all the energy band models gets simplified to the well known results under certain limiting conditions which forms the mathematical compatibility of our generalized theoretical formalism.
Resumo:
In the present work the methods of relativistic quantum chemistry have been applied to a number of small systems containing heavy elements, for which relativistic effects are important. First, a thorough introduction of the methods used is presented. This includes some of the general methods of computational chemistry and a special section dealing with how to include the effects of relativity in quantum chemical calculations. Second, after this introduction the results obtained are presented. Investigations on high-valent mercury compounds are presented and new ways to synthesise such compounds are proposed. The methods described were applied to certain systems containing short Pt-Tl contacts. It was possible to explain the interesting bonding situation in these compounds. One of the most common actinide compounds, uranium hexafluoride was investigated and a new picture of the bonding was presented. Furthermore the rareness of uranium-cyanide compounds was discussed. In a foray into the chemistry of gold, well known for its strong relativistic effects, investigations on different gold systems were performed. Analogies between Au$^+$ and platinum on one hand and oxygen on the other were found. New systems with multiple bonds to gold were proposed to experimentalists. One of the proposed systems was spectroscopically observed shortly afterwards. A very interesting molecule, which was theoretically predicted a few years ago is WAu$_{12}$. Some of its properties were calculated and the bonding situation was discussed. In a further study on gold compounds it was possible to explain the substitution pattern in bis[phosphane-gold(I)] thiocyanate complexes. This is of some help to experimentalists as the systems could not be crystallised and the structure was therefore unknown. Finally, computations on one of the heaviest elements in the periodic table were performed. Calculation on compounds containing element 110, darmstadtium, showed that it behaves similarly as its lighter homologue platinum. The extreme importance of relativistic effects for these systems was also shown.
Resumo:
Quantum effects are often of key importance for the function of biological systems at molecular level. Cellular respiration, where energy is extracted from the reduction of molecular oxygen to water, is no exception. In this work, the end station of the electron transport chain in mitochondria, cytochrome c oxidase, is investigated using quantum chemical methodology. Cytochrome c oxidase contains two haems, haem a and haem a3. Haem a3, with its copper companion, CuB, is involved in the final reduction of oxygen into water. This binuclear centre receives the necessary electrons from haem a. Haem a, in turn, receives its electrons from a copper ion pair in the vicinity, called CuA. Density functional theory (DFT) has been used to clarify the charge and spin distributions of haem a, as well as changes in these during redox activity. Upon reduction, the added electron is shown to be evenly distributed over the entire haem structure, important for the accommodation of the prosthetic group within the protein. At the same time, the spin distribution of the open-shell oxidised state is more localised to the central iron. The exact spin density distribution has been disputed in the literature, however, different experiments indicating different distributions of the unpaired electron. The apparent contradiction is shown to be due to the false assumption of a unit amount of unpaired electron density; in fact, the oxidised state has about 1.3 unpaired electrons. The validity of the DFT results have been corroborated by wave function based coupled cluster calculations. Point charges, for use in classical force field based simulations, have been parameterised for the four metal centres, using a newly developed methodology. In the procedure, the subsystem for which point charges are to be obtained, is surrounded by an outer region, with the purpose of stabilising the inner region, both electronically and structurally. Finally, the possibility of vibrational promotion of the electron transfer step between haem a and a3 has been investigated. Calculating the full vibrational spectra, at DFT level, of a combined model of the two haems, revealed several normal modes that do shift electron density between the haems. The magnitude of the shift was found to be moderate, at most. The proposed mechanism could have an assisting role in the electron transfer, which still seems to be dominated by electron tunnelling.
Resumo:
For a dynamically disordered continuum it is found that the exact quantum mechanical mean square displacement 〈x2(t)〉∼t3, for t→∞. A Gaussian white-noise spectrum is assumed for the random potential. The result differs qualitatively from the diffusive behavior well known for the one-band lattice Hamiltonian, and is understandable in terms of the momentum cutoff inherent in the lattice, simulating a "momentum bath."
Resumo:
We offer a procedure for evaluating the forces exerted by solitons of weak-coupling field theories on one another. We illustrate the procedure for the kink and the antikink of the two-dimensional φ4 theory. To do this, we construct analytically a static solution of the theory which can be interpreted as a kink and an antikink held a distance R apart. This leads to a definition of the potential energy U(R) for the pair, which is seen to have all the expected features. A corresponding evaluation is also done for U(R) between a soliton and an antisoliton of the sine-Gordon theory. When this U(R) is inserted into a nonrelativistic two-body problem for the pair, it yields a set of bound states and phase shifts. These are found to agree with exact results known for the sine-Gordon field theory in those regions where U(R) is expected to be significant, i.e., when R is large compared to the soliton size. We take this agreement as support that our procedure for defining U(R) yields the correct description of the dynamics of well-separated soliton pairs. An important feature of U(R) is that it seems to give strong intersoliton forces when the coupling constant is small, as distinct from the forces between the ordinary quanta of the theory. We suggest that this is a general feature of a class of theories, and emphasize the possible relevance of this feature to real strongly interacting hadrons.
Resumo:
We consider a suspended elastic rod under longitudinal compression. The compression can be used to adjust potential energy for transverse displacements from the harmonic to the double well regime. The two minima in potential energy curve describe two possible buckled states. Using transition state theory (TST) we have calculated the rate of conversion from one state to other. If the strain epsilon = 4 epsilon c the simple TST rate diverges. We suggest a method to correct this divergence for quantum calculations. We also find that zero point energy contributions can be quite large so that single mode calculations can lead to large errors in the rate.
Resumo:
Arguments arising from quantum mechanics and gravitation theory as well as from string theory, indicate that the description of space-time as a continuous manifold is not adequate at very short distances. An important candidate for the description of space-time at such scales is provided by noncommutative space-time where the coordinates are promoted to noncommuting operators. Thus, the study of quantum field theory in noncommutative space-time provides an interesting interface where ordinary field theoretic tools can be used to study the properties of quantum spacetime. The three original publications in this thesis encompass various aspects in the still developing area of noncommutative quantum field theory, ranging from fundamental concepts to model building. One of the key features of noncommutative space-time is the apparent loss of Lorentz invariance that has been addressed in different ways in the literature. One recently developed approach is to eliminate the Lorentz violating effects by integrating over the parameter of noncommutativity. Fundamental properties of such theories are investigated in this thesis. Another issue addressed is model building, which is difficult in the noncommutative setting due to severe restrictions on the possible gauge symmetries imposed by the noncommutativity of the space-time. Possible ways to relieve these restrictions are investigated and applied and a noncommutative version of the Minimal Supersymmetric Standard Model is presented. While putting the results obtained in the three original publications into their proper context, the introductory part of this thesis aims to provide an overview of the present situation in the field.
Resumo:
We compute AC electrical transport at quantum Hall critical points, as modeled by intersecting branes and gauge/gravity duality. We compare our results with a previous field theory computation by Sachdev, and find unexpectedly good agreement. We also give general results for DC Hall and longitudinal conductivities valid for a wide class of quantum Hall transitions, as well as (semi)analytical results for AC quantities in special limits. Our results exhibit a surprising degree of universality; for example, we find that the high frequency behavior, including subleading behavior, is identical for our entire class of theories.