966 resultados para Pull-In Parameters
Resumo:
OBJECTIVE To evaluate whether magnetic resonance imaging (MRI) is effective as computed tomography (CT) in determining morphologic and functional pulmonary changes in patients with cystic fibrosis (CF) in association with multiple clinical parameters. MATERIALS AND METHODS Institutional review board approval and patient written informed consent were obtained. In this prospective study, 30 patients with CF (17 men and 13 women; mean (SD) age, 30.2 (9.2) years; range, 19-52 years) were included. Chest CT was acquired by unenhanced low-dose technique for clinical purposes. Lung MRI (1.5 T) comprised T2- and T1-weighted sequences before and after the application of 0.1-mmol·kg gadobutrol, also considering lung perfusion imaging. All CT and MR images were visually evaluated by using 2 different scoring systems: the modified Helbich and the Eichinger scores. Signal intensity of the peribronchial walls and detected mucus on T2-weighted images as well as signal enhancement of the peribronchial walls on contrast-enhanced T1-weighted sequences were additionally assessed on MRI. For the clinical evaluation, the pulmonary exacerbation rate, laboratory, and pulmonary functional parameters were determined. RESULTS The overall modified Helbich CT score had a mean (SD) of 15.3 (4.8) (range, 3-21) and median of 16.0 (interquartile range [IQR], 6.3). The overall modified Helbich MR score showed slightly, not significantly, lower values (Wilcoxon rank sum test and Student t test; P > 0.05): mean (SD) of 14.3 (4.7) (range, 3-20) and median of 15.0 (IQR, 7.3). Without assessment of perfusion, the overall Eichinger score resulted in the following values for CT vs MR examinations: mean (SD), 20.3 (7.2) (range, 4-31); and median, 21.0 (IQR, 9.5) vs mean (SD), 19.5 (7.1) (range, 4-33); and median, 20.0 (IQR, 9.0). All differences between CT and MR examinations were not significant (Wilcoxon rank sum tests and Student t tests; P > 0.05). In general, the correlations of the CT scores (overall and different imaging parameters) to the clinical parameters were slightly higher compared to the MRI scores. However, if all additional MRI parameters were integrated into the scoring systems, the correlations reached the values of the CT scores. The overall image quality was significantly higher for the CT examinations compared to the MRI sequences. CONCLUSIONS One major diagnostic benefit of lung MRI in CF is the possible acquisition of several different morphologic and functional imaging features without the use of any radiation exposure. Lung MRI shows reliable associations with CT and clinical parameters, which suggests its implementation in CF for routine diagnosis, which would be particularly important in follow-up imaging over the long term.
Resumo:
The first objective of this study was to determine normative digital X-ray radiogrammetry (DXR) values, based on original digital images, in a pediatric population (aged 6-18 years). The second aim was to compare these reference data with patients suffering from distal radius fractures, whereas both cohorts originated from the same geographical region and were evaluated using the same technical parameters as well as inclusion and exclusion criteria. DXR-BMD and DXR-MCI of the metacarpal bones II-IV were assessed on standardized digital hand radiographs, without printing or scanning procedures. DXR parameters were estimated separately by gender and among six age groups; values in the fracture group were compared to age- and gender-matched normative data using Student's t tests and Z scores. In the reference cohort (150 boys, 138 girls), gender differences were found in bone mineral density (DXR-BMD), with higher values for girls from 11 to 14 years and for boys from 15 to 18 years (p < 0.05). Girls had higher normative metacarpal index (DXR-MCI) values than boys, with significant differences at 11-14 years (p < 0.05). In the case-control investigation, the fracture group (95 boys, 69 girls) presented lower DXR-BMD at 15-18 years in boys and 13-16 years in girls vs. the reference cohort (p < 0.05); DXR-MCI was lower at 11-18 years in boys and 11-16 years in girls (p < 0.05). Mean Z scores in the fracture group for DXR-BMD were -0.42 (boys) and -0.46 (girls), and for DXR-MCI were -0.51 (boys) and -0.53 (girls). These findings indicate that the fully digital DXR technique can be accurately applied in pediatric populations ≥ 6 years of age. The lower DXR-BMD and DXR-MCI values in the fracture group suggest promising early identification of individuals with increased fracture risk, without the need for additional radiation exposure, enabling the initiation of prevention strategies to possibly reduce the incidence of osteoporosis later in life.
Resumo:
BACKGROUND: This study focused on the descriptive analysis of cattle movements and farm-level parameters derived from cattle movements, which are considered to be generically suitable for risk-based surveillance systems in Switzerland for diseases where animal movements constitute an important risk pathway. METHODS: A framework was developed to select farms for surveillance based on a risk score summarizing 5 parameters. The proposed framework was validated using data from the bovine viral diarrhoea (BVD) surveillance programme in 2013. RESULTS: A cumulative score was calculated per farm, including the following parameters; the maximum monthly ingoing contact chain (in 2012), the average number of animals per incoming movement, use of mixed alpine pastures and the number of weeks in 2012 a farm had movements registered. The final score for the farm depended on the distribution of the parameters. Different cut offs; 50, 90, 95 and 99%, were explored. The final scores ranged between 0 and 5. Validation of the scores against results from the BVD surveillance programme 2013 gave promising results for setting the cut off for each of the five selected farm level criteria at the 50th percentile. Restricting testing to farms with a score ≥ 2 would have resulted in the same number of detected BVD positive farms as testing all farms, i.e., the outcome of the 2013 surveillance programme could have been reached with a smaller survey. CONCLUSIONS: The seasonality and time dependency of the activity of single farms in the networks requires a careful assessment of the actual time period included to determine farm level criteria. However, selecting farms in the sample for risk-based surveillance can be optimized with the proposed scoring system. The system was validated using data from the BVD eradication program. The proposed method is a promising framework for the selection of farms according to the risk of infection based on animal movements.
Resumo:
Relaxin is able to inhibit spontaneous, oxytocin-and prostaglandin-driven uterine contractions. The intracellular mechanism of action of relaxin on uterine relaxation had previously been studied using isometrically suspended uterine strips. Since uterine strips contain stroma as well as myometrium, the changes in biochemical parameters induced by relaxin treatment may not occur in the same cell types responsible for the physical changes. In these studies, cultures of enriched populations of rat myometrial cells were used to investigate the effect of relaxin on biochemical and morphological parameters which are related to relaxation.^ Under optimal culture conditions (initial plating density 1 - 1.5 x 10('6)cells/ml, 3 ml/35 mm dish, 2 days culture), enzymatically isolated rat myometrial cells were able to respond to relaxin with cAMP elevation. Relaxin elevated cAMP levels in the presence but not the absence of 0.1 mM methylisobutylxanthine or 0.4 um forskolin in a time- and concentration-dependent manner. In contrast, isoproterenol was able to elevate cAMP levels in the presence and absence of 0.1 mM methylisobutylxanthine.^ Oxytocin treatment caused a decrease in mean cell length and area of myometrial cells in culture which could be considered analogous to contraction. Under optimal culture conditions, relaxin increased myometrial cell length and area (i.e. analogous to relaxation) of oxytocin-treated cells in a time- and concentration-dependent manner. Other relaxants such as isoproterenol and dibutyryl cAMP also increased cell length and area of oxytocin - treated myometrial cells in culture.^ Under optimal culture conditions, relaxin decreased myosin light chain kinase activity in a time-and concentration-dependent manner by increasing the K(,50) of the enzyme for calmodulin (CaM), i.e. decreasing the affinity of the enzyme for CaM. The decrease in the affinity of myosin light chain kinase for CaM may be due to the phosphorylation of the enzyme by cAMP-dependent protein kinase. Relaxin also decreased the Ca('2+)(.)CaM-independent myosin light chain kinase activity to a lesser extent than that of the Ca('2+)(.)CaM-dependent enzyme activity. This was not attributable to a decrease in the affinity of the enzyme for myosin in myometrial cells in culture, in contrast to the finding of such a change following relaxin treatment of uterine strips. Further studies are required to clarify this point.^ There was a temporal association between the effects of relaxin on elevation of cAMP levels in the presence of 0.4 uM forskolin, increase in cell length and decrease in myosin light chain kinase activity. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^
Resumo:
The discrete-time Markov chain is commonly used in describing changes of health states for chronic diseases in a longitudinal study. Statistical inferences on comparing treatment effects or on finding determinants of disease progression usually require estimation of transition probabilities. In many situations when the outcome data have some missing observations or the variable of interest (called a latent variable) can not be measured directly, the estimation of transition probabilities becomes more complicated. In the latter case, a surrogate variable that is easier to access and can gauge the characteristics of the latent one is usually used for data analysis. ^ This dissertation research proposes methods to analyze longitudinal data (1) that have categorical outcome with missing observations or (2) that use complete or incomplete surrogate observations to analyze the categorical latent outcome. For (1), different missing mechanisms were considered for empirical studies using methods that include EM algorithm, Monte Carlo EM and a procedure that is not a data augmentation method. For (2), the hidden Markov model with the forward-backward procedure was applied for parameter estimation. This method was also extended to cover the computation of standard errors. The proposed methods were demonstrated by the Schizophrenia example. The relevance of public health, the strength and limitations, and possible future research were also discussed. ^
Resumo:
Geostrophic surface velocities can be derived from the gradients of the mean dynamic topography-the difference between the mean sea surface and the geoid. Therefore, independently observed mean dynamic topography data are valuable input parameters and constraints for ocean circulation models. For a successful fit to observational dynamic topography data, not only the mean dynamic topography on the particular ocean model grid is required, but also information about its inverse covariance matrix. The calculation of the mean dynamic topography from satellite-based gravity field models and altimetric sea surface height measurements, however, is not straightforward. For this purpose, we previously developed an integrated approach to combining these two different observation groups in a consistent way without using the common filter approaches (Becker et al. in J Geodyn 59(60):99-110, 2012, doi:10.1016/j.jog.2011.07.0069; Becker in Konsistente Kombination von Schwerefeld, Altimetrie und hydrographischen Daten zur Modellierung der dynamischen Ozeantopographie, 2012, http://nbn-resolving.de/nbn:de:hbz:5n-29199). Within this combination method, the full spectral range of the observations is considered. Further, it allows the direct determination of the normal equations (i.e., the inverse of the error covariance matrix) of the mean dynamic topography on arbitrary grids, which is one of the requirements for ocean data assimilation. In this paper, we report progress through selection and improved processing of altimetric data sets. We focus on the preprocessing steps of along-track altimetry data from Jason-1 and Envisat to obtain a mean sea surface profile. During this procedure, a rigorous variance propagation is accomplished, so that, for the first time, the full covariance matrix of the mean sea surface is available. The combination of the mean profile and a combined GRACE/GOCE gravity field model yields a mean dynamic topography model for the North Atlantic Ocean that is characterized by a defined set of assumptions. We show that including the geodetically derived mean dynamic topography with the full error structure in a 3D stationary inverse ocean model improves modeled oceanographic features over previous estimates.