885 resultados para Pseudomonas aeruginosa LBI mutant
Resumo:
OBJECTIVES The aim of this study was to assess gingival fluid (GCF) cytokine messenger RNA (mRNA) levels, subgingival bacteria, and clinical periodontal conditions during a normal pregnancy to postpartum. MATERIALS AND METHODS Subgingival bacterial samples were analyzed with the checkerboard DNA-DNA hybridization method. GCF samples were assessed with real-time PCR including five proinflammatory cytokines and secretory leukocyte protease inhibitor. RESULTS Nineteen pregnant women with a mean age of 32 years (S.D. ± 4 years, range 26-42) participated in the study. Full-mouth bleeding scores (BOP) decreased from an average of 41.2% (S.D. ± 18.6%) at the 12th week of pregnancy to 26.6% (S.D. ± 14.4%) at the 4-6 weeks postpartum (p < 0.001). Between week 12 and 4-6 weeks postpartum, the mean probing pocket depth changed from 2.4 mm (S.D. ± 0.4) to 2.3 mm (S.D. ± 0.3) (p = 0.34). Higher counts of Eubacterium saburreum, Parvimonas micra, Selenomonas noxia, and Staphylococcus aureus were found at week 12 of pregnancy than at the 4-6 weeks postpartum examinations (p < 0.001). During and after pregnancy, statistically significant correlations between BOP scores and bacterial counts were observed. BOP scores and GCF levels of selected cytokines were not related to each other and no differences in GCF levels of the cytokines were observed between samples from the 12th week of pregnancy to 4-6 weeks postpartum. Decreasing postpartum counts of Porphyromonas endodontalis and Pseudomonas aeruginosa were associated with decreasing levels of Il-8 and Il-1β. CONCLUSIONS BOP decreased after pregnancy without any active periodontal therapy. Associations between bacterial counts and cytokine levels varied greatly in pregnant women with gingivitis and a normal pregnancy outcome. Postpartum associations between GCF cytokines and bacterial counts were more consistent. CLINICAL RELEVANCE Combined assessments of gingival fluid cytokines and subgingival bacteria may provide important information on host response.
Resumo:
OBJECTIVES We assessed if adjunct administration of piperacillin/tazobactam added clinical and microbiological treatment benefits. MATERIALS AND METHODS Thirty-six subjects (mean age 52.1 years (SD ± 10.3)) (NS by group) with chronic periodontitis were randomly enrolled receiving subgingival debridement and the local administration of piperacillin/tazobactam (test group) or debridement alone (control group). Bleeding on probing (BOP), probing pocket depth (PPD), and microbiological counts of 74 species were studied by checkerboard DNA-DNA hybridization up to month 6 after treatment. RESULTS Mean PPD changes between baseline and month 6 in the test and control groups were 1.5 and 1.8 mm, respectively (NS between groups). BOP in both groups decreased from about 80 to 40 %. At 4 and 12 weeks, lower counts of the following bacteria were found in the test group (site level): Fusobacterium species, Parvimonas micra, Pseudomonas aeruginosa, Staphylococcus aureus, Tannerella forsythia, Treponema denticola, and a composite load of nine pathogens (p < 0.001). At week 26, subjects receiving local antibiotics had a lower prevalence at tested sites for Fusobacterium nucleatum sp. polymorphum, Fusobacterium periodonticum, P. micra, and T. denticola. CONCLUSIONS At 26 weeks, treatment with or without piperacillin/tazobactam resulted in similar BOP and PPD improvements. At week 26 and at the subject level, the prevalence of 4/74 pathogens was found at lower counts in the group receiving local antibiotics. CLINICAL RELEVANCE Administration of piperacillin/tazobactam reduces the prevalence of Fusobacterium, P. micra, and T. denticola to a greater extent than debridement alone but with no short-term differences in PPD or BOP.
Resumo:
PURPOSE Infections are a major cause of morbidity and mortality in pediatric cancer patients. The aim of this study was to establish the microbiological spectrum and the susceptibility patterns of bacteremia-causing bacteria in pediatric cancer patients with febrile neutropenia in relation to the use of prophylactic and empirical antibiotics. METHODS We analyzed positive blood cultures of pediatric cancer patients presenting with febrile neutropenia between 2004 and 2011 in Groningen and Amsterdam (the Netherlands) and in Bern (Switzerland), using different antibiotic prophylactic and empirical regimens. RESULTS A total of 156 patients with 202 bacteremias, due to 248 bacteria species, were enrolled. The majority (73%) of bacteremias were caused by Gram-positive bacteria. Gram-negative bacteria, especially Pseudomonas aeruginosa, were observed significantly more often in Bern, where no fluoroquinolone prophylaxis was used. Ciprofloxacin-resistant bacteria were cultured more often from patients who did receive ciprofloxacin prophylaxis, compared to the patients who did not (57 versus 11%, p = 0.044). CONCLUSIONS Gram-positive bacteria predominated in this study. We showed that the use of prophylactic antibiotics in pediatric cancer patients was associated with increased resistance rates, which needs further study. The strategy for empiric antimicrobial therapy for febrile neutropenia should be adapted to local antibiotic resistance patterns.
Resumo:
CXCL14 is a chemokine with an atypical, yet highly conserved, primary structure characterized by a short N terminus and high sequence identity between human and mouse. Although it induces chemotaxis of monocytic cells at high concentrations, its physiological role in leukocyte trafficking remains elusive. In contrast, several studies have demonstrated that CXCL14 is a broad-spectrum antimicrobial peptide that is expressed abundantly and constitutively in epithelial tissues. In this study, we further explored the antimicrobial properties of CXCL14 against respiratory pathogens in vitro and in vivo. We found that CXCL14 potently killed Pseudomonas aeruginosa, Streptococcus mitis, and Streptococcus pneumoniae in a dose-dependent manner in part through membrane depolarization and rupture. By performing structure-activity studies, we found that the activity against Gram-negative bacteria was largely associated with the N-terminal peptide CXCL141-13. Interestingly, the central part of the molecule representing the β-sheet also maintained ∼62% killing activity and was sufficient to induce chemotaxis of THP-1 cells. The C-terminal α-helix of CXCL14 had neither antimicrobial nor chemotactic effect. To investigate a physiological function for CXCL14 in innate immunity in vivo, we infected CXCL14-deficient mice with lung pathogens and we found that CXCL14 contributed to enhanced clearance of Streptococcus pneumoniae, but not Pseudomonas aeruginosa. Our comprehensive studies reflect the complex bactericidal mechanisms of CXCL14, and we propose that different structural features are relevant for the killing of Gram-negative and Gram-positive bacteria. Taken together, our studies show that evolutionary-conserved features of CXCL14 are important for constitutive antimicrobial defenses against pneumonia.
Resumo:
To avoid the undesired deprotonation during the addition of organolithium and organomagnesium reagents to ketones, the thioiminium salts, easily prepared from lactams and amides are converted into 2,2-disubstituted and 2-monosubstituted amines by reaction with simple nucleophiles such as organocerium and organocopper reagents. The reaction of thioiminium iodides with organocerium reagents derived by transmetalation of corresponding lithium reagents with anhydrous cerium(III) chloride has been investigated. These thioiminium iodides act as good electrophiles and accept alkylceriums towards bisaddition. The newly synthesized amines have been characterized by 1H and 13C NMR, IR and mass spectra. The amines have been converted into their hydrochlorides and characterized by COSY. These hydrochlorides have been subjected to antimicrobial screening with clinically isolated microorganisms, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi and Candida albicans. The hydrochlorides show quite good activity against these bacteria and fungus.
Resumo:
Pneumonia is a leading cause of hospitalization in patients with chronic obstructive pulmonary disease (COPD). Although most COPD patients are smokers, the effects of cigarette smoke exposure on clearance of lung bacterial pathogens and on immune and inflammatory responses are incompletely defined. Here, clearance of Streptococcus pneumoniae and Pseudomonas aeruginosa and associated immune responses were examined in mice exposed to cigarette smoke or following smoking cessation. Mice exposed to cigarette smoke for 6 weeks or 4 months demonstrated decreased lung bacterial burden compared to air-exposed mice when infected 16-24 hours post-exposure. When infection was performed after smoke cessation, bacterial clearance kinetics of mice previously exposed to smoke reversed to comparable levels as those of control mice suggesting that the observed defects were not dependent on adaptive immunological memory to bacterial determinants found in smoke. Comparing cytokine levels and myeloid cell production prior to infection in mice exposed to cigarette smoke relative to mice never exposed or following smoke cessation revealed that reduced bacterial burden was most strongly associated with higher levels of IL-1β and GM-CSF in the lungs and with increased neutrophil reserve and monocyte turnover in the bone marrow. Using serpinb1a-deficient mice with reduced neutrophil numbers and treatment with G-CSF showed that increased neutrophil numbers contribute only in part to the effect of smoke on infection. Our findings indicate that cigarette smoke induces a temporary and reversible increase in clearance of lung pathogens, which correlates with local inflammation and increased myeloid cell output from the bone marrow.
Resumo:
The crystal structure of Escherichia coli ornithine transcarbamoylase (OTCase, EC 2.1.3.3) complexed with the bisubstrate analog N-(phosphonacetyl)-l-ornithine (PALO) has been determined at 2.8-Å resolution. This research on the structure of a transcarbamoylase catalytic trimer with a substrate analog bound provides new insights into the linkages between substrate binding, protein–protein interactions, and conformational change. The structure was solved by molecular replacement with the Pseudomonas aeruginosa catabolic OTCase catalytic trimer (Villeret, V., Tricot, C., Stalon, V. & Dideberg, O. (1995) Proc. Natl. Acad. Sci. USA 92, 10762–10766; Protein Data Bank reference pdb 1otc) as the model and refined to a crystallographic R value of 21.3%. Each polypeptide chain folds into two domains, a carbamoyl phosphate binding domain and an l-ornithine binding domain. The bound inhibitor interacts with the side chains and/or backbone atoms of Lys-53, Ser-55, Thr-56, Arg-57, Thr-58, Arg-106, His-133, Asn-167, Asp-231, Met-236, Leu-274, Arg-319 as well as Gln-82 and Lys-86 from an adjacent chain. Comparison with the unligated P. aeruginosa catabolic OTCase structure indicates that binding of the substrate analog results in closure of the two domains of each chain. As in E. coli aspartate transcarbamoylase, the 240s loop undergoes the largest conformational change upon substrate binding. The clinical implications for human OTCase deficiency are discussed.
Resumo:
tRNA splicing in the yeast Saccharomyces cerevisiae requires an endonuclease to excise the intron, tRNA ligase to join the tRNA half-molecules, and 2′-phosphotransferase to transfer the splice junction 2′-phosphate from ligated tRNA to NAD, producing ADP ribose 1′′–2′′ cyclic phosphate (Appr>p). We show here that functional 2′-phosphotransferases are found throughout eukaryotes, occurring in two widely divergent yeasts (Candida albicans and Schizosaccharomyces pombe), a plant (Arabidopsis thaliana), and mammals (Mus musculus); this finding is consistent with a role for the enzyme, acting in concert with ligase, to splice tRNA or other RNA molecules. Surprisingly, functional 2′-phosphotransferase is found also in the bacterium Escherichia coli, which does not have any known introns of this class, and does not appear to have a ligase that generates junctions with a 2′-phosphate. Analysis of the database shows that likely members of the 2′-phosphotransferase family are found also in one other bacterium (Pseudomonas aeruginosa) and two archaeal species (Archaeoglobus fulgidus and Pyrococcus horikoshii). Phylogenetic analysis reveals no evidence for recent horizontal transfer of the 2′-phosphotransferase into Eubacteria, suggesting that the 2′-phosphotransferase has been present there since close to the time that the three kingdoms diverged. Although 2′-phosphotransferase is not present in all Eubacteria, and a gene disruption experiment demonstrates that the protein is not essential in E. coli, the continued presence of 2′-phosphotransferase in Eubacteria over large evolutionary times argues for an important role for the protein.
Resumo:
Polyhydroxyalkanoate (PHA) is a family of polymers composed primarily of R-3-hydroxyalkanoic acids. These polymers have properties of biodegradable thermoplastics and elastomers. Medium-chain-length PHAs (MCL-PHAs) are synthesized in bacteria by using intermediates of the β-oxidation of alkanoic acids. To assess the feasibility of producing MCL-PHAs in plants, Arabidopsis thaliana was transformed with the PhaC1 synthase from Pseudomonas aeruginosa modified for peroxisome targeting by addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. Immunocytochemistry demonstrated that the modified PHA synthase was appropriately targeted to leaf-type peroxisomes in light-grown plants and glyoxysomes in dark-grown plants. Plants expressing the PHA synthase accumulated electron-lucent inclusions in the glyoxysomes and leaf-type peroxisomes, as well as in the vacuole. These inclusions were similar to bacterial PHA inclusions. Analysis of plant extracts by GC and mass spectrometry demonstrated the presence of MCL-PHA in transgenic plants to approximately 4 mg per g of dry weight. The plant PHA contained saturated and unsaturated 3-hydroxyalkanoic acids ranging from six to 16 carbons with 41% of the monomers being 3-hydroxyoctanoic acid and 3-hydroxyoctenoic acid. These results indicate that the β-oxidation of plant fatty acids can generate a broad range of R-3-hydroxyacyl-CoA intermediates that can be used to synthesize MCL-PHAs.
Resumo:
Poly(4-vinyl-N-alkylpyridinium bromide) was covalently attached to glass slides to create a surface that kills airborne bacteria on contact. The antibacterial properties were assessed by spraying aqueous suspensions of bacterial cells on the surface, followed by air drying and counting the number of cells remaining viable (i.e., capable of growing colonies). Amino glass slides were acylated with acryloyl chloride, copolymerized with 4-vinylpyridine, and N-alkylated with different alkyl bromides (from propyl to hexadecyl). The resultant surfaces, depending on the alkyl group, were able to kill up to 94 ± 4% of Staphylococcus aureus cells sprayed on them. A surface alternatively created by attaching poly(4-vinylpyridine) to a glass slide and alkylating it with hexyl bromide killed 94 ± 3% of the deposited S. aureus cells. On surfaces modified with N-hexylated poly(4-vinylpyridine), the numbers of viable cells of another Gram-positive bacterium, Staphylococcus epidermidis, as well as of the Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli, dropped more than 100-fold compared with the original amino glass. In contrast, the number of viable bacterial cells did not decline significantly after spraying on such common materials as ceramics, plastics, metals, and wood.
Resumo:
Recent advances in studies of bacterial gene expression have brought the realization that cell-to-cell communication and community behavior are critical for successful interactions with higher organisms. Species-specific cell-to-cell communication is involved in successful pathogenic or symbiotic interactions of a variety of bacteria with plant and animal hosts. One type of cell–cell signaling is acyl-homoserine lactone quorum sensing in Gram-negative bacteria. This type of quorum sensing represents a dedicated communication system that enables a given species to sense when it has reached a critical population density in a host, and to respond by activating expression of genes necessary for continued success in the host. Acyl-homoserine lactone signaling in the opportunistic animal and plant pathogen Pseudomonas aeruginosa is a model for the relationships among quorum sensing, pathogenesis, and community behavior. In the P. aeruginosa model, quorum sensing is required for normal biofilm maturation and for virulence. There are multiple quorum-sensing circuits that control the expression of dozens of specific genes that represent potential virulence loci.
Resumo:
By exploiting the ability of Pseudomonas aeruginosa to infect a variety of vertebrate and nonvertebrate hosts, we have developed model systems that use plants and nematodes as adjuncts to mammalian models to help elucidate the molecular basis of P. aeruginosa pathogenesis. Our studies reveal a remarkable degree of conservation in the virulence mechanisms used by P. aeruginosa to infect hosts of divergent evolutionary origins.
Resumo:
Type IV pili are thin filaments that extend from the poles of a diverse group of bacteria, enabling them to move at speeds of a few tenths of a micrometer per second. They are required for twitching motility, e.g., in Pseudomonas aeruginosa and Neisseria gonorrhoeae, and for social gliding motility in Myxococcus xanthus. Here we report direct observation of extension and retraction of type IV pili in P. aeruginosa. Cells without flagellar filaments were labeled with an amino-specific Cy3 fluorescent dye and were visualized on a quartz slide by total internal reflection microscopy. When pili were attached to a cell and their distal ends were free, they extended or retracted at rates of about 0.5 μm s−1 (29°C). They also flexed by Brownian motion, exhibiting a persistence length of about 5 μm. Frequently, the distal tip of a filament adsorbed to the substratum and the filament was pulled taut. From the absence of lateral deflections of such filaments, we estimate tensions of at least 10 pN. Occasionally, cell bodies came free and were pulled forward by pilus retraction. Thus, type IV pili are linear actuators that extend, attach at their distal tips, exert substantial force, and retract.
Resumo:
The 4.6-kb region 5'-upstream from the gene encoding a cobalt-containing and amide-induced high molecular mass-nitrile hydratase (H-NHase) from Rhodococcus rhodochrous J1 was found to be required for the expression of the H-NHase gene with a host-vector system in a Rhodococcus strain. Sequence analysis has revealed that there are at least five open reading frames (H-ORF1 approximately 5) in addition to H-NHase alpha- and beta-subunit genes. Deletion of H-ORF1 and H-ORF2 resulted in decrease of NHase activity, suggesting a positive regulatory role of both ORFs in the expression of the H-NHase gene. H-ORF1 showed significant similarity to a regulatory protein, AmiC, which is involved in regulation of amidase expression by binding an inducer amide in Pseudomonas aeruginosa. H-ORF4, which has been found to be uninvolved in regulation of H-NHase expression by enzyme assay for its deletion transformant and Northern blot analysis for R. rhodochrous J1, showed high similarity to transposases from insertion sequences of several bacteria. Determination of H-NHase activity and H-NHase mRNA levels in R. rhodochrous J1 has indicated that the expression of the H-NHase gene is regulated by an amide at the transcriptional level. These findings suggest the participation of H-ORF4 (IS1164) in the organization of the H-NHase gene cluster and the involvement of H-ORF1 in unusual induction mechanism, in which H-NHase is formed by amides (the products in the NHase reaction), but not by nitriles (the substrates).
Resumo:
During my PhD course, I focused my research on antimicrobial peptides (AMPs), in particular on the aspects of their computational design and development. This work led to the development of a new family of AMPs that I designed, starting from the amino acid sequence of a snake venom toxin, the cardiotoxin 1 (CTX-1) of Naja atra. Naja atra atra cardiotoxin 1, produced by Chinese cobra snakes belonging to Elapidae family, is included in the three-finger toxin family and exerts high cytotoxicity and antimicrobial activity too. This toxin family is characterized by specific folding of three beta-sheet loops (“fingers”) extending from the central core and by four conserved disulfide bridges. Using as template the first loop of this toxin, different sequences of 20 amino acids linear cationic peptides have been designed in order to avoid toxic effects but to maintain and strengthen the antimicrobial activity. As a result, the sequence NCP-0 (Naja Cardiotoxin Peptide-0) was designed as ancestor and subsequently other 4 variant sequences of NCP0 were developed. These variant sequences have shown microbicidal activity towards a panel of reference strains of Gram-positive and Gram-negative bacteria, fungi and an enveloped virus. In particular, the sequence designed as NCP-3 (Naja Cardiotoxin Peptide-3) and its variants NCP-3a and NCP-3b have shown the best antimicrobial activity together with low cytotoxicity against eukaryotic cells and low hemolytic activity. Bactericidal activity has been demonstrated by minimum bactericidal concentration (MBC) assay at values below 10 μg/ml for Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii ( clinical isolates), Moraxella catharralis ATCC 25238, MRSA ATCC 43400, while towards Staphylococcus aureus ATCC 25923, Enterococcus hirae ATCC 10541 and Streptococcus agalactiae ATCC 13813 the bactericidal activity was demonstrated even below 1.6 μg/ml concentration. This potent antimicrobial activity was confirmed even for unicellular fungi Candida albicans, Candida glabrata and Malassezia pachydermatis (MBC 32.26-6.4 μg/ml), and also against the fast-growing mycobacteria Mycobacterium smegmatis DSMZ 43756 and Mycobacterium fortuitum DSMZ 46621 (MBC 100 μg/ml). Moreover, NCP-3 has shown a virucidal activity on the enveloped virus Bovine Herpesvirus 1 (BoHV1) belonging to herpesviridae family. The bactericidal activity is maintained in a high salt concentration (125 and 250 mM NaCl) medium and PB +20% Mueller Hinton Medium for E. coli, MRSA and Pseudomonas aeruginosa reference strains. Considering these in vitro obtained data, we propose NCP-3 and its variants NCP-3a and NCP-3b as promising antimicrobial candidates. For this reason, the whole novel AMPs family has been protected by a national patent (n°102015000015951).