926 resultados para Products with antimicrobial action
Resumo:
This study investigated the main methods of separation of components of lignocellulosic biomass, with an emphasis on obtaining lignin and its application. The work was developed based on the concept of Biorefinery proposing full use of renewable raw materials and / or the use of lignocellulosic agricultural residues by biochemical or biotechnological conversion in obtaining high value added products with minimal environmental impact. From this premise, a literature review was performed in refereed journal articles and theses in order to gather enough material for critical analysis of usual and alternative methods in the literature. When researching methods that add value to lignin, it was found that with the technology found today, the cost required to have a degree of competitiveness is still too high, preventing much of the process. However, the isolated lignin can be used as raw material in the production of numerous types of biocomposites and polymers and other products such as phenols, benzene, dispersants, vanillin, emulsifying agents, antioxidants, pesticides, fertilizers, charcoal, concrete additives, among others. As an industrial production level is necessary, because the consumption of biomass will only grow over the years, it is necessary that new methods or technologies to be created in order to facilitate the extensive use of lignocellulosic biomass
Resumo:
Over the recent human history within the last centuries the environmental degradation has been accumulating and growing rampantly causing effects today easily perceived by all. Because of this, today we can say that there is almost a consensus among the world population's concern with the environment in order to seek to minimize these effects immediately in addition to not aggravate the situation for future generations. Thus today it is common to find a wide range of products with this ideal of sustainable commitment in the various commercial areas. The construction industry has a responsibility to be a major cause of these impacts to the environment, so it is also one of the main vectors able to mitigate the degradation of the environment. In order to encourage, oversee and promote the sustainable attitudes within the construction area emerged environmental certifications. In this work it's exposed some of the major certifications for civilian buildings, highlighting the Selo Azul da Caixa that appears as a good choice focused on the Brazilian reality
Resumo:
The soccer is a sport that can be decided in a penalty, including world champions have already been defined For this, shoot a penalty or defend a penalty can build heroes and villains in this sport so popular and competitive. Studying penalty kicks will a better understanding of the actions of goalkeepers and kickers. This study looked at 527 penalty charges in professional games in 2010 to 2015. The objective was to verify the fact that the charge be right-handed or left-handed interfered with the action of the goalkeeper, differences in efficiency of left-and right-handed players, check results in penalty situations in the match and in the disputes of penalties and performance of players in club games and selections. The complete use in 527 penalty charges was 74%. It is concluded that if the debt collector is right-handed, the goalie moves to the right and if it's left-handed move more to the left. Tax collectors selections had better use (77%) than the clubs. Right-handers presented more efficacy (76%) compared to lefties (66%). The index of the goalkeepers was greater when centered (22%), although 91% of all charges being directed to the right and left sectors
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The molecular integration of nutrient-and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of kappa B kinase beta. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of kappa B kinase beta phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity. (Endocrinology 153:5261-5274, 2012)
Resumo:
Background: RNA interference (RNAi) is a post-transcriptional gene silencing process in which double-stranded RNA (dsRNA) directs the degradation of a specific corresponding target mRNA. The mediators of this process are small dsRNAs of approximately 21 to 23 bp in length, called small interfering RNAs (siRNAs), which can be prepared in vitro and used to direct the degradation of specific mRNAs inside cells. Hence, siRNAs represent a powerful tool to study and control gene and cell function. Rapid progress has been made in the use of siRNA as a means to attenuate the expression of any protein for which the cDNA sequence is known. Individual siRNAs can be chemically synthesized, in vitro-transcribed, or expressed in cells from siRNA expression vectors. However, screening for the most efficient siRNAs for post-transcriptional gene silencing in cells in culture is a laborious and expensive process. In this study, the effectiveness of two siRNA production strategies for the attenuation of abundant proteins for DNA repair were compared in human cells: (a) the in vitro production of siRNA mixtures by the Dicer enzyme (Diced siRNAs); and (b) the chemical synthesis of very specific and unique siRNA sequences (Stealth RNai (TM)). Materials, Methods & Results: For in vitro-produced siRNAs, two segments of the human Ku70 (167 bp in exon 5; and 249 bp in exon 13; NM001469) and Xrcc4 (172 bp in exon 2; and 108 bp in exon 6; NM003401) genes were chosen to generate dsRNA for subsequent "Dicing" to create mixtures of siRNAs. The Diced fragments of siRNA for each gene sequence were pooled and stored at -80 degrees C. Alternatively, chemically synthesized Stealth siRNAs were designed and generated to match two very specific gene sequence regions for each target gene of interest (Ku70 and Xrcc4). HCT116 cells were plated at 30% confluence in 24- or 6-well culture plates. The next day, cells were transfected by lipofection with either Diced or Stealth siRNAs for Ku70 or Xrcc4, in duplicate, at various doses, with blank and sham transfections used as controls. Cells were harvested at 0, 24, 48, 72 and 96 h post-transfection for protein determination. The knockdown of specific targeted gene products was quantified by Western blot using GAPDH as control. Transfection of gene-specific siRNA to either Ku70 or Xrcc4 with both Diced and Stealth siRNAs resulted in a down regulation of the targeted proteins to approximately 10 to 20% of control levels 48 h after transfection, with recovery to pre-treatment levels by 96 h. Discussion: By transfecting cells with Diced or chemically synthesized Stealth siRNAs, Ku70 and Xrcc4, two highly expressed proteins in cells, were effectively attenuated, demonstrating the great potential for the use of both siRNA production strategies as tools to perform loss of function experiments in mammalian cells. In fact, down-regulation of Ku70 and Xrcc4 has been shown to reduce the activity of the non-homologous end joining DNA pathway, a very desirable approach for the use of homologous recombination technology for gene targeting or knockout studies. Stealth RNAi (TM) was developed to achieve high specificity and greater stability when compared with mixtures of enzymatically-produced (Diced) siRNA fragments. In this study, both siRNA approaches inhibited the expression of Ku70 and Xrcc4 gene products, with no detectable toxic effects to the cells in culture. However, similar knockdown effects using Diced siRNAs were only attained at concentrations 10-fold higher than with Stealth siRNAs. The application of RNAi technology will expand and continue to provide new insights into gene regulation and as potential applications for new therapies, transgenic animal production and basic research.
Resumo:
Objectives: This study evaluated the degree of conversion (DC) and working time (WT) of two commercial, dual-cured resin cements polymerized at varying temperatures and under different curing-light accessible conditions, using Fourier transformed infrared analysis (FTIR). Materials and Methods: Calibra (Cal; Dentsply Caulk) and Variolink II (Ivoclar Vivadent) were tested at 25 degrees C or preheated to 37 degrees C or 50 degrees C and applied to a similar-temperature surface of a horizontal attenuated-total-reflectance unit (ATR) attached to an infrared spectrometer. The products were polymerized using one of four conditions: direct light exposure only (600 mW/cm(2)) through a glass slide or through a 1.5- or 3.0-mm-thick ceramic disc (A2 shade, IPS e.max, Ivoclar Vivadent) or allowed to self-cure in the absence of light curing. FTIR spectra were recorded for 20 min (1 spectrum/s, 16 scans/spectrum, resolution 4 cm(-1)) immediately after application to the ATR. DC was calculated using standard techniques of observing changes in aliphatic-to-aromatic peak ratios precuring and 20-min postcuring as well as during each 1-second interval. Time-based monomer conversion analysis was used to determine WT at each temperature. DC and WT data (n=6) were analyzed by two-way analysis of variance and Tukey post hoc test (p=0.05). Results: Higher temperatures increased DC regardless of curing mode and product. For Calibra, only the 3-mm-thick ceramic group showed lower DC than the other groups at 25 degrees C (p=0.01830), while no significant difference was observed among groups at 37 degrees C and 50 degrees C. For Variolink, the 3-mm-thick ceramic group showed lower DC than the 1-mm-thick group only at 25 degrees C, while the self-cure group showed lower DC than the others at all temperatures (p=0.00001). WT decreased with increasing temperature: at 37 degrees C near 70% reduction and at 50 degrees C near 90% for both products, with WT reduction reaching clinically inappropriate times in some cases (p=0.00001). Conclusion: Elevated temperature during polymerization of dual-cured cements increased DC. WT was reduced with elevated temperature, but the extent of reduction might not be clinically acceptable.
Resumo:
This study aimed to analyze the variation of wood density in the radial and longitudinal trunk of Eucalyptus grandis trees. Six 23 years old trees were selected and cross sections were cut in three longitudinal positions (DBH, 3.70, 6.10 m) of the log. The results showed that the apparent density of wood (i) increases in the radial direction, characterizing the juvenile wood and mature wood, (ii) no significant variation in base-top log direction was observed. Based on the radial profiles of density, the mature wood of Eucalyptus grandis can be applied in the manufacture of products with higher aggregated value (PMVAs).
Resumo:
Visceral leishmaniasis (VL) is a zoonotic disease characterized by infection of mononuclear phagocytes by Leishmania chagasi. The primary vector is Lutzomyia longipalpis and the dog is the main domestic reservoir. The control and current treatment of dogs using synthetic drugs have not shown effectiveness in reducing the incidence of disease in man. In attempt to find new compounds with leishmanicidal action, plant secondary metabolites have been studied in search of treatments of VL. This study aimed to evaluate the leishmanicidal activity of Musa paradisiaca (banana tree) and Spondias mombin (cajazeira) chemical constituents on promastigotes and amastigotes of L. chagasi. Phytochemical analysis by column chromatography was performed on ethanol extracts of two plants and fractions were isolated. Thin layer chromatography was used to compare the fractions and for isolation the substances to be used in vitro tests. The in vitro tests on promastigotes of L chagasi used the MTT colorimetric method and the method of ELISA in situ was used against amastigotes besides the cytotoxicity in RAW 264.7 cells. Of the eight fractions tested, Sm1 and Sm2 from S. mombin had no action against promastigotes, but had good activity against amastigotes. The fractions Mp1 e Mp4 of M. paradisiaca were very cytotoxic to RAW 264.7 cells. The best result was obtained with the fraction Sm3 from S. mombin with IC50 of 11.26 mu g/ml against promastigotes and amastigotes of 0.27 mu g/ml. The fraction Sm3 characterized as tannic acid showed the best results against both forms of Leishmania being a good candidate for evaluation in in vivo tests. (C) 2012 Published by Elsevier B.V.
Resumo:
The phenolic composition of heartwood extracts from Fraxinus excelsior L. and F. americana L., both before and after toasting in cooperage, was studied using LC-DAD/ESI-MS/MS. Low-molecular weight (LMW) phenolic compounds, secoiridoids, phenylethanoid glycosides, dilignols and oligolignols compounds were detected, and 48 were identified, or tentatively characterized, on the basis of their retention time, UV/Vis and MS spectra, and MS fragmentation patterns. Some LMW phenolic compounds like protocatechuic acid and aldehyde, hydroxytyrosol and tyrosol, were unlike to those for oak wood, while ellagic and gallic acid were not found. The toasting of wood resulted in a progressive increase in lignin degradation products with regard to toasting intensity. The levels of some of these compounds in medium-toasted ash woods were much higher than those normally detected in toasted oak, highlighting vanillin levels, thus a more pronounced vanilla character can be expected when using toasted ash wood in the aging wines. Moreover, in seasoned wood, we found a great variety of phenolic compounds which had not been found in oak wood, especially oleuropein, ligstroside and olivil, along with verbascoside and isoverbascoside in F. excelsior, and oleoside in F. americana. Toasting mainly provoked their degradation, thus in medium-toasted wood, only four of them were detected. This resulted in a minor differentiation between toasted ash and oak woods. The absence of tannins in ash wood, which are very important in oak wood, is another peculiar characteristic that should be taken into account when considering its use in cooperage. Copyright (C) 2012 John Wiley & Sons, Ltd.
Effect of incorporation of amaranth on the physical properties and nutritional value of cheese bread
Resumo:
At the present celiac disease has no known cure, and its only treatment is a strict lifelong adherence to a gluten-free diet. Cheese bread is a traditional Brazilian product and a safe option for celiacs. However, like other gluten-free breads, it has inherent low levels of fibers and minerals. The objective of this study was to evaluate the effect of incorporation of whole amaranth flour on the physical properties and nutritional value of cheese bread. Amaranth flour was incorporated at 10, 15, and 20% proportions in different formulations. The increasing amaranth levels darkened the product, reduced specific volume, and increased compression force. Ten percent amaranth-content cheese breads exhibited slight differences in physical properties compared with the controls. These results demonstrated the possibility of incorporating 10% of whole amaranth flour in the formulation of cheese bread resulting in a product with higher dietary fiber and iron contents and the same level of acceptance as that of the conventional formulation. The aim of this approach is to increase the availability of gluten-free bakery products with added nutritional value contributing to increase the variety of the diet of celiac patients.
Resumo:
In order to inactivate enzymatic deterioration, whole rice bran samples were subjected to two stabilization methods. Changes in nutritional value in terms of, concerning chemical composition, minerals and fatty acid content, were evaluated to supplement existing data and promote the utilization of rice bran in the human diet. The following homemade heat treatments were applied: roasting on a conventional stove or heating in a microwave oven. Based on the results, the different heating methods affected sample composition, since the levels of some nutrients of treated samples showed significant changes (p<0.05) compared to corresponding raw samples. The rice bran treated on a conventional stove produced products with lower moisture (5.14±0.10 g/100 g) and nutrients such as sodium 11.8%; palmitic acid 9.9% and stearic acid 8.1%. The microwave oven procedure resulted in better nutrient preservation, with slightly higher moisture content (6.28±0.10 g/100 g), and appears to be a practical and rapid tool for home heat stabilization of rice bran.
Resumo:
Research in art conservation has been developed from the early 1950s, giving a significant contribution to the conservation-restoration of cultural heritage artefacts. In fact, only through a profound knowledge about the nature and conditions of constituent materials, suitable decisions on the conservation and restoration measures can thus be adopted and preservation practices enhanced. The study of ancient artworks is particularly challenging as they can be considered as heterogeneous and multilayered systems where numerous interactions between the different components as well as degradation and ageing phenomena take place. However, difficulties to physically separate the different layers due to their thickness (1-200 µm) can result in the inaccurate attribution of the identified compounds to a specific layer. Therefore, details can only be analysed when the sample preparation method leaves the layer structure intact, as for example the preparation of embedding cross sections in synthetic resins. Hence, spatially resolved analytical techniques are required not only to exactly characterize the nature of the compounds but also to obtain precise chemical and physical information about ongoing changes. This thesis focuses on the application of FTIR microspectroscopic techniques for cultural heritage materials. The first section is aimed at introducing the use of FTIR microscopy in conservation science with a particular attention to the sampling criteria and sample preparation methods. The second section is aimed at evaluating and validating the use of different FTIR microscopic analytical methods applied to the study of different art conservation issues which may be encountered dealing with cultural heritage artefacts: the characterisation of the artistic execution technique (chapter II-1), the studies on degradation phenomena (chapter II-2) and finally the evaluation of protective treatments (chapter II-3). The third and last section is divided into three chapters which underline recent developments in FTIR spectroscopy for the characterisation of paint cross sections and in particular thin organic layers: a newly developed preparation method with embedding systems in infrared transparent salts (chapter III-1), the new opportunities offered by macro-ATR imaging spectroscopy (chapter III-2) and the possibilities achieved with the different FTIR microspectroscopic techniques nowadays available (chapter III-3). In chapter II-1, FTIR microspectroscopy as molecular analysis, is presented in an integrated approach with other analytical techniques. The proposed sequence is optimized in function of the limited quantity of sample available and this methodology permits to identify the painting materials and characterise the adopted execution technique and state of conservation. Chapter II-2 describes the characterisation of the degradation products with FTIR microscopy since the investigation on the ageing processes encountered in old artefacts represents one of the most important issues in conservation research. Metal carboxylates resulting from the interaction between pigments and binding media are characterized using synthesised metal palmitates and their production is detected on copper-, zinc-, manganese- and lead- (associated with lead carbonate) based pigments dispersed either in oil or egg tempera. Moreover, significant effects seem to be obtained with iron and cobalt (acceleration of the triglycerides hydrolysis). For the first time on sienna and umber paints, manganese carboxylates are also observed. Finally in chapter II-3, FTIR microscopy is combined with further elemental analyses to characterise and estimate the performances and stability of newly developed treatments, which should better fit conservation-restoration problems. In the second part, in chapter III-1, an innovative embedding system in potassium bromide is reported focusing on the characterisation and localisation of organic substances in cross sections. Not only the identification but also the distribution of proteinaceous, lipidic or resinaceous materials, are evidenced directly on different paint cross sections, especially in thin layers of the order of 10 µm. Chapter III-2 describes the use of a conventional diamond ATR accessory coupled with a focal plane array to obtain chemical images of multi-layered paint cross sections. A rapid and simple identification of the different compounds is achieved without the use of any infrared microscope objectives. Finally, the latest FTIR techniques available are highlighted in chapter III-3 in a comparative study for the characterisation of paint cross sections. Results in terms of spatial resolution, data quality and chemical information obtained are presented and in particular, a new FTIR microscope equipped with a linear array detector, which permits reducing the spatial resolution limit to approximately 5 µm, provides very promising results and may represent a good alternative to either mapping or imaging systems.
Resumo:
In 1995, the European Union (EU) Member States and 12 Mediterranean countries launched in Barcelona a liberalization process that aims at establishing a free trade area (to be realized by 2010) and at promoting a sustainable and balanced economic development by the adoption of a new generation of Agreements: the Euro-Mediterranean Agreements (EMA). For the Mediterranean partner countries, the main concern is a better access for their fruit and vegetable exports to the European market. These products represent the main exports of these countries, and the EU is their first trading partner. On the other side, for the EU the main issue is not only the promotion of its products, but also the protection of its fruit and vegetables producers. Moreover, the trade with third countries is the key element of the Common Market Organization of the sector. Fruit and vegetables represent a very sensitive sector since their high seasonality, high perishability, and especially since the production of the Mediterranean countries is often similar to the European Mediterranean’s countries one. In fact, the agreements define preferences at the entrance of the EU market providing limited concessions for each partner, for specific products, limited quantities and calendars. This research tries to analyze the bilateral trade volume for fresh fruit and vegetables in the European and Italian markets in order to assess the effects of Mediterranean liberalization on this sector. Free trade of agricultural products represents a very actual topic in international trade and the Mediterranean countries, recognised as big producers of fruit and vegetables, as big exporters of their crops and actually significantly present on the European market, could be high competitors with the inward production because the outlet could be the same. The goal of this study is to provide some considerations about the competitiveness of mediterranean fruit and vegetables productions after Barcelona Process, in a first step for the European market and then also for the Italian one. The aim is to discuss the influence of the euro-mediterranean agreements on the fruit and vegetables trade between 10 foreign Mediterranean countries (Algeria, Egypt, Israel, Jordan, Libya, Lebanon, Morocco, Tunisia, Syria, and Turkey) and 15 EU countries in the period 1995-2007, by means of a gravity model, which is a widespread methodology in international trade analysis. The basic idea of gravity models is that bilateral trade from one country to another (as the dependent variable) can be explained by a set of factors: - factors that capture the potential of a country to export goods and services; - factors that capture the propensity of a country to imports goods and services; - any other forces that either attract or inhibit bilateral trade. This analysis compares only imports’ flows by Europe and by Italy (in volumes) from Mediterranean countries, since the exports’ flows toward those foreign countries are not significant, especially for Italy. The market of fruit and vegetables appears as a high heterogeneous group so it is very difficult to show a synthesis of the analysis performed and the related results. In fact, this sector includes the so called “poor products” (such as potatoes and legumes), and the “rich product”, such as nuts or exotic fruit, and there are a lot of different goods that arouse a dissimilar consumer demand which directly influence the import requirements. Fruit and vegetables sector includes products with extremely different biological cycles, leading to a very unlike seasonality. Moreover, the Mediterranean area appears as a highly heterogeneous bloc, including countries which differ from the others for economic size, production potential, capability to export and for the relationships with the EU. The econometric estimation includes 68 analyses, 34 of which considering the European import and 34 the Italian import and the products are examined in their aggregated form and in their disaggregated level. The analysis obtains a very high R2 coefficient, which means that the methodology is able to assess the import effects on fruit and vegetables associated to the Association Agreements, preferential tariffs, regional integration, and others information involved in the equation. The empirical analysis suggests that fruits and vegetables trade flows are well explained by some parameters: size of the involved countries (especially GDP and population of the Mediterranean countries); distances; prices of imported products; local production for the aggregated products; preferential expressed tariffs like duty free; sub-regional agreements that enforce the export capability. The euro-mediterranean agreements are significant in some of the performed analysis, confirming the slow and gradual evolution of euro- Mediterranean liberalization. The euro-mediterranean liberalization provides opportunities from one side, and imposes a new important challenge from the other side. For the EU the chance is that fruit and vegetables imported from the mediterranean area represent a support for local supply and a possibility to increase the range of products existing on the market. The challenge regards the competition of foreign products with the local ones since the types of productions are similar and markets coincide, especially in the Italian issue. We need to apply a strategy based not on a trade antagonism, but on the realization of a common plane market with the Mediterranean countries. This goal could be achieved enhancing the industrial cooperation in addition to commercial relationships, and increasing investments’ flows in the Mediterranean countries aiming at transforming those countries from potential competitors to trade partners and creating new commercial policies to export towards extra European countries.
Resumo:
Sekundäres organisches Aerosol (SOA) ist ein wichtiger Bestandteil von atmosphärischen Aerosolpartikeln. Atmosphärische Aerosole sind bedeutsam, da sie das Klima über direkte (Streuung und Absorption von Strahlung) und indirekte (Wolken-Kondensationskeime) Effekte beeinflussen. Nach bisherigen Schätzungen ist die SOA-Bildung aus biogenen Kohlenwasserstoffen global weit wichtiger als die SOA-Bildung aus anthropogenen Kohlenwasserstoffen. Reaktive Kohlenwasserstoffe, die in großen Mengen von der Vegetation emittiert werden und als die wichtigsten Vorläufersubstanzen für biogenes SOA gelten, sind die Terpene. In der vorliegenden Arbeit wurde eine Methode entwickelt, welche die Quantifizierung von aciden Produkten der Terpen-Oxidation ermöglicht. Die Abscheidung des größenselektierten Aerosols (PM 2.5) erfolgte auf Quarzfilter, die unter Zuhilfenahme von Ultraschall mittels Methanol extrahiert wurden. Nach Aufkonzentrierung und Lösungsmittelwechsel auf Wasser sowie Standardaddition wurden die Proben mit einer Kapillar-HPLC-ESI-MSn-Methode analysiert. Das verwendete Ionenfallen-Massenspektrometer (LCQ-DECA) bietet die Möglichkeit, Strukturaufklärung durch selektive Fragmentierung der Qasimolekülionen zu betreiben. Die Quantifizierung erfolgte teilweise im MS/MS-Modus, wodurch Selektivität und Nachweisgrenze verbessert werden konnten. Um Produkte der Terpen-Oxidation zu identifizieren, die nicht als Standards erhältlich waren, wurden Ozonolysexperimente durchgeführt. Dadurch gelang die Identifizierung einer Reihe von Oxidationsprodukten in Realproben. Neben schon bekannten Produkten der Terpen-Oxidation konnten einige Produkte erstmals in Realproben eindeutig als Produkte des α Pinens nachgewiesen werden. In den Proben der Ozonolyseexperimente konnten auch Produkte mit hohem Molekulargewicht (>300 u) nachgewiesen werden, die Ähnlichkeit zeigen zu den als Dimeren oder Polymeren in der Literatur bezeichneten Substanzen. Sie konnten jedoch nicht in Feldproben gefunden werden. Im Rahmen von 5 Messkampagnen in Deutschland und Finnland wurden Proben der atmosphärischen Partikelphase genommen. Die Quantifizierung von Produkten der Oxidation von α-Pinen, β-Pinen, 3-Caren, Sabinen und Limonen in diesen Proben ergab eine große zeitliche und örtliche Variationsbreite der Konzentrationen. Die Konzentration von Pinsäure bewegte sich beispielsweise zwischen etwa 0,4 und 21 ng/m³ während aller Messkampagnen. Es konnten stets Produkte verschiedener Terpene nachgewiesen werden. Produkte einiger Terpene eignen sich sogar als Markersubstanzen für verschiedene Pflanzenarten. Sabinen-Produkte wie Sabinsäure können als Marker für die Emissionen von Laubbäumen wie Buchen oder Birken verwendet werden, während Caren-Produkte wie Caronsäure als Marker für Nadelbäume, speziell Kiefern, verwendet werden können. Mit den quantifizierten Substanzen als Marker wurde unter zu Hilfenahme von Messungen des Gehaltes an organischem und elementarem Kohlenstoff im Aerosol der Anteil des sekundären organischen Aerosols (SOA) errechnet, der von der Ozonolyse der Terpene stammt. Erstaunlicherweise konnten nur 1% bis 8% des SOA auf die Ozonolyse der Terpene zurückgeführt werden. Dies steht im Gegensatz zu der bisherigen Meinung, dass die Ozonolyse der Terpene die wichtigste Quelle für biogenes SOA darstellt. Gründe für diese Diskrepanz werden in der Arbeit diskutiert. Um die atmosphärischen Prozesse der Bildung von SOA vollständig zu verstehen, müssen jedoch noch weitere Anstrengungen unternommen werden.