899 resultados para Process Improvement
Resumo:
The synthesis of polymerlike amorphous carbon(a-C:H) thin-films by microwave excited collisional hydrocarbon plasma process is reported. Stable and highly aromatic a-C:H were obtained containing significant inclusions of poly(p-phenylene vinylene) (PPV). PPV confers universal optoelectronic properties to the synthesized material. That is a-C:H with tailor-made refractive index are capable of becoming absorption-free in visible (red)-near infrared wavelength range. Production of large aromatic hydrocarbon including phenyl clusters and/or particles is attributed to enhanced coagulation of elemental plasma species under collisional plasma conditions. Detailed structural and morphological changes that occur in a-C:H during the plasma synthesis are also described.
Resumo:
The importance of actively managing and analysing business processes is acknowledged more than ever in organisations nowadays. Business processes form an essential part of an organisation and their application areas are manifold. Most organisations keep records of various activities that have been carried out for auditing purposes, but they are rarely used for analysis purposes. This paper describes the design and implementation of a process analysis tool that replays, analyses and visualises a variety of performance metrics using a process definition and its corresponding execution logs. The replayer uses a YAWL process model example to demonstrate its capacity to support advanced language constructs.
Resumo:
In recent years social technologies such as wikis, blogs or microblogging have seen an exponential growth in the uptake of their user base making this type of technology one of the most significant networking and knowledge sharing platforms for potentially hundreds of millions of users. However, the adoption of these technologies has been so far mostly for private purposes. First attempts have been made to embed features of social technologies in the corporate IT landscape, and Business Process Management is no exception. This paper aims to consolidate the opportunities for integrating social technologies into the different stages of the business process lifecycle. Thus, it contributes to a conceptualization of this fast growing domain, and can help to categorize academic and corporate development activities.
Resumo:
In this editorial letter, we provide the readers of Information Systems and e-Business Management with an introduction to Business Process Management and the challenges of empirical research in this field. We then briefly describe selected examples of current research efforts in this fields and how the papers accepted for this special issue contribute to extending our body of knowledge.
Resumo:
This panel discusses the impact of Green IT on information systems and how information systems can meet environmental challenges and ensure sustainability. We wish to highlight the role of green business processes, and specifically the contributions that the management of these processes can play in leveraging the transformative power of IS in order to create an environmentally sustainable society. The management of business processes has typically been thought of in terms of business improvement alongside the dimensions time, cost, quality, or flexibility – the so-called ‘devil’s quadrangle’. Contemporary organizations, however, increasingly become aware of the need to create more sustainable, IT-enabled business processes that are also successful in terms of their economic, ecological, as well as social impact. Exemplary ecological key performance indicators that increasingly find their way into the agenda of managers include carbon emissions, data center energy, or renewable energy consumption (SAP 2010). The key challenge, therefore, is to extend the devil’s quadrangle to a devil’s pentagon, including sustainability as an important fifth dimension in process change.
Resumo:
Background It is well known that lifestyle factors including overweight/obesity, physical inactivity, smoking and alcohol use are largely related with morbidity and mortality of chronic diseases including diabetes and cardiovascular diseases. The effect of lifestyle factors on people’s mental health who have a chronic disease is less defined in the research. The World Health Organisation has defined health as “a state of complete physical, mental and social well-being”. It is important, therefore to develop an understanding of the relationships between lifestyle and mental health as this may have implications for maximising the efficacy of health promotion in people with chronic diseases. Objectives The overall aim of the research was to examine the relationships between lifestyle factors and mental health among Australian midlife and older women. Methodology The current research measured four lifestyle factors including weight status, physical activity, smoking and alcohol use. Three interconnecting studies were undertaken to develop a comprehensive understanding of the relationships between lifestyle factors and mental health. Study 1 investigated the longitudinal effect of lifestyle factors on mental health by using midlife and older women randomly selected from the community. Study 2 adopted a cross-sectional design, and compared the effect of lifestyle factors on mental health between midlife and older women with and without diabetes. Study 3 examined the mediating effect of self-efficacy in the relationships between lifestyle factors and mental health among midlife and older women with diabetes. A questionnaire survey was chosen as the means to gather information, and multiple linear regression analysis was conducted as the primary statistical approach. Results The research showed that the four lifestyle factors including weight status, physical activity, smoking and alcohol use did impact on mental health among Australian midlife and older women. First, women with a higher BMI had lower levels of mental health than women with normal weight, but as women age, the mental health of women who were overweight and obese becomes better than that of women with normal weight. Second, women who were physically active had higher levels of mental health than those who were not. Third, smoking adversely impacted on women’s mental health. Finally, those who were past-drinkers had less anxiety symptoms than women who were non-drinkers as they age. Women with diabetes appeared to have lower levels of mental health compared to women without. However, the disparities of mental health between two groups were confounded by low levels of physical activity and co-morbidities. This finding underlines the effect of physical activity on women’s mental health, and highlights the potential of reducing the gap of mental health by promoting physical activity. In addition, self-efficacy was shown to be the mediator of the relationships between BMI, physical activity and depression, suggesting that enhancing people’s self-efficacy may be useful for mental health improvement. Conclusions In conclusion, Australian midlife and older women who live with a healthier lifestyle have higher levels of mental health. It is suggested that strategies aiming to improve people’s mental health may be more effective if they focus on enhancing people’s self-efficacy levels. This study has implications to both health education and policy development. It indicates that health professionals may need to consider clients’ mental health as an integrated part of lifestyle changing process. Furthermore, given that lifestyle factors impact on both physical and mental health, lifestyle modification should continue to be the focus of policy development.
Resumo:
Human facial expression is a complex process characterized of dynamic, subtle and regional emotional features. State-of-the-art approaches on facial expression recognition (FER) have not fully utilized this kind of features to improve the recognition performance. This paper proposes an approach to overcome this limitation using patch-based ‘salient’ Gabor features. A set of 3D patches are extracted to represent the subtle and regional features, and then inputted into patch matching operations for capturing the dynamic features. Experimental results show a significant performance improvement of the proposed approach due to the use of the dynamic features. Performance comparison with pervious work also confirms that the proposed approach achieves the highest CRR reported to date on the JAFFE database and a top-level performance on the Cohn-Kanade (CK) database.
Resumo:
Ethernet is a key component of the standards used for digital process buses in transmission substations, namely IEC 61850 and IEEE Std 1588-2008 (PTPv2). These standards use multicast Ethernet frames that can be processed by more than one device. This presents some significant engineering challenges when implementing a sampled value process bus due to the large amount of network traffic. A system of network traffic segregation using a combination of Virtual LAN (VLAN) and multicast address filtering using managed Ethernet switches is presented. This includes VLAN prioritisation of traffic classes such as the IEC 61850 protocols GOOSE, MMS and sampled values (SV), and other protocols like PTPv2. Multicast address filtering is used to limit SV/GOOSE traffic to defined subsets of subscribers. A method to map substation plant reference designations to multicast address ranges is proposed that enables engineers to determine the type of traffic and location of the source by inspecting the destination address. This method and the proposed filtering strategy simplifies future changes to the prioritisation of network traffic, and is applicable to both process bus and station bus applications.
Resumo:
Car Following models have a critical role in all microscopic traffic simulation models. Current microscopic simulation models are unable to mimic the unsafe behaviour of drivers as most are based on presumptions about the safe behaviour of drivers. Gipps model is a widely used car following model embedded in different micro-simulation models. This paper examines the Gipps car following model to investigate ways of improving the model for safety studies application. The paper puts forward some suggestions to modify the Gipps model to improve its capabilities to simulate unsafe vehicle movements (vehicles with safety indicators below critical thresholds). The result of the paper is one step forward to facilitate assessing and predicting safety at motorways using microscopic simulation. NGSIM as a rich source of vehicle trajectory data for a motorway is used to extract its relatively risky events. Short following headways and Time To Collision are used to assess critical safety event within traffic flow. The result shows that the modified proposed car following to a certain extent predicts the unsafe trajectories with smaller error values than the generic Gipps model.
Resumo:
Lean product design has the potential to reduce the overall product development time and cost and can improve the quality of a product. However, it has been found that no or little work has been carried out to provide an integrated framework of "lean design" and to quantitatively evaluate the effectiveness of lean practices/principles in product development process. This research proposed an integrated framework for lean design process and developed a dynamic decision making tool based on Methods Time Measurement (MTM) approach for assessing the impact of lean design on the assembly process. The proposed integrated lean framework demonstrates the lean processes to be followed in the product design and assembly process in order to achieve overall leanness. The decision tool consists of a central database, the lean design guidelines, and MTM analysis. Microsoft Access and C# are utilized to develop the user interface to use the MTM analysis as decision making tool. MTM based dynamic tool is capable of estimating the assembly time, costs of parts and labour of various alternatives of a design and hence is able to achieve optimum design. A case study is conducted to test and validate the functionality of the MTM Analysis as well as to verify the lean guidelines proposed for product development.
Resumo:
Facial expression recognition (FER) algorithms mainly focus on classification into a small discrete set of emotions or representation of emotions using facial action units (AUs). Dimensional representation of emotions as continuous values in an arousal-valence space is relatively less investigated. It is not fully known whether fusion of geometric and texture features will result in better dimensional representation of spontaneous emotions. Moreover, the performance of many previously proposed approaches to dimensional representation has not been evaluated thoroughly on publicly available databases. To address these limitations, this paper presents an evaluation framework for dimensional representation of spontaneous facial expressions using texture and geometric features. SIFT, Gabor and LBP features are extracted around facial fiducial points and fused with FAP distance features. The CFS algorithm is adopted for discriminative texture feature selection. Experimental results evaluated on the publicly accessible NVIE database demonstrate that fusion of texture and geometry does not lead to a much better performance than using texture alone, but does result in a significant performance improvement over geometry alone. LBP features perform the best when fused with geometric features. Distributions of arousal and valence for different emotions obtained via the feature extraction process are compared with those obtained from subjective ground truth values assigned by viewers. Predicted valence is found to have a more similar distribution to ground truth than arousal in terms of covariance or Bhattacharya distance, but it shows a greater distance between the means.