993 resultados para Probabilistic Algorithms
Resumo:
Reliable prediction of long-term medical device performance using computer simulation requires consideration of variability in surgical procedure, as well as patient-specific factors. However, even deterministic simulation of long-term failure processes for such devices is time and resource consuming so that including variability can lead to excessive time to achieve useful predictions. This study investigates the use of an accelerated probabilistic framework for predicting the likely performance envelope of a device and applies it to femoral prosthesis loosening in cemented hip arthroplasty.
A creep and fatigue damage failure model for bone cement, in conjunction with an interfacial fatigue model for the implant–cement interface, was used to simulate loosening of a prosthesis within a cement mantle. A deterministic set of trial simulations was used to account for variability of a set of surgical and patient factors, and a response surface method was used to perform and accelerate a Monte Carlo simulation to achieve an estimate of the likely range of prosthesis loosening. The proposed framework was used to conceptually investigate the influence of prosthesis selection and surgical placement on prosthesis migration.
Results demonstrate that the response surface method is capable of dramatically reducing the time to achieve convergence in mean and variance of predicted response variables. A critical requirement for realistic predictions is the size and quality of the initial training dataset used to generate the response surface and further work is required to determine the recommendations for a minimum number of initial trials. Results of this conceptual application predicted that loosening was sensitive to the implant size and femoral width. Furthermore, different rankings of implant performance were predicted when only individual simulations (e.g. an average condition) were used to rank implants, compared with when stochastic simulations were used. In conclusion, the proposed framework provides a viable approach to predicting realistic ranges of loosening behaviour for orthopaedic implants in reduced timeframes compared with conventional Monte Carlo simulations.
Resumo:
In this paper, we present a methodology for implementing a complete Digital Signal Processing (DSP) system onto a heterogeneous network including Field Programmable Gate Arrays (FPGAs) automatically. The methodology aims to allow design refinement and real time verification at the system level. The DSP application is constructed in the form of a Data Flow Graph (DFG) which provides an entry point to the methodology. The netlist for parts that are mapped onto the FPGA(s) together with the corresponding software and hardware Application Protocol Interface (API) are also generated. Using a set of case studies, we demonstrate that the design and development time can be significantly reduced using the methodology developed.
Resumo:
Local computation in join trees or acyclic hypertrees has been shown to be linked to a particular algebraic structure, called valuation algebra.There are many models of this algebraic structure ranging from probability theory to numerical analysis, relational databases and various classical and non-classical logics. It turns out that many interesting models of valuation algebras may be derived from semiring valued mappings. In this paper we study how valuation algebras are induced by semirings and how the structure of the valuation algebra is related to the algebraic structure of the semiring. In particular, c-semirings with idempotent multiplication induce idempotent valuation algebras and therefore permit particularly efficient architectures for local computation. Also important are semirings whose multiplicative semigroup is embedded in a union of groups. They induce valuation algebras with a partially defined division. For these valuation algebras, the well-known architectures for Bayesian networks apply. We also extend the general computational framework to allow derivation of bounds and approximations, for when exact computation is not feasible.
Resumo:
Recently, a number of most significant digit (msd) first bit parallel multipliers for recursive filtering have been reported. However, the design approach which has been used has, in general, been heuristic and consequently, optimality has not always been assured. In this paper, msd first multiply accumulate algorithms are described and important relationships governing the dependencies between latency, number representations, etc are derived. A more systematic approach to designing recursive filters is illustrated by applying the algorithms and associated relationships to the design of cascadable modules for high sample rate IIR filtering and wave digital filtering.