895 resultados para Power system simulations


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The netcdf files in this archive comprise climate model output from Community Earth System Model for experiments looking at forest loss over Western North America and the Amazon. For further description of the model and configuration for these experiments please see the accompanying manuscript: Synergistic ecoclimate teleconnections from forest loss in different regions structure global ecological responses Elizabeth S. Garcia, Abigail L. S. Swann, Juan C. Villegas, David D. Breshears, Darin J. Law, Scott R. Saleska, and Scott C. Stark published in PLOS ONE, 2016. Contact information in README.txt

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Current space exploration has transpired through the use of chemical rockets, and they have served us well, but they have their limitations. Exploration of the outer solar system, Jupiter and beyond will most likely require a new generation of propulsion system. One potential technology class to provide spacecraft propulsion and power systems involve thermonuclear fusion plasma systems. In this class it is well accepted that d-He3 fusion is the most promising of the fuel candidates for spacecraft applications as the 14.7 MeV protons carry up to 80% of the total fusion power while ‘s have energies less than 4 MeV. The other minor fusion products from secondary d-d reactions consisting of 3He, n, p, and 3H also have energies less than 4 MeV. Furthermore there are two main fusion subsets namely, Magnetic Confinement Fusion devices and Inertial Electrostatic Confinement (or IEC) Fusion devices. Magnetic Confinement Fusion devices are characterized by complex geometries and prohibitive structural mass compromising spacecraft use at this stage of exploration. While generating energy from a lightweight and reliable fusion source is important, another critical issue is harnessing this energy into usable power and/or propulsion. IEC fusion is a method of fusion plasma confinement that uses a series of biased electrodes that accelerate a uniform spherical beam of ions into a hollow cathode typically comprised of a gridded structure with high transparency. The inertia of the imploding ion beam compresses the ions at the center of the cathode increasing the density to the point where fusion occurs. Since the velocity distributions of fusion particles in an IEC are essentially isotropic and carry no net momentum, a means of redirecting the velocity of the particles is necessary to efficiently extract energy and provide power or create thrust. There are classes of advanced fuel fusion reactions where direct-energy conversion based on electrostatically-biased collector plates is impossible due to potential limits, material structure limitations, and IEC geometry. Thermal conversion systems are also inefficient for this application. A method of converting the isotropic IEC into a collimated flow of fusion products solves these issues and allows direct energy conversion. An efficient traveling wave direct energy converter has been proposed and studied by Momota , Shu and further studied by evaluated with numerical simulations by Ishikawa and others. One of the conventional methods of collimating charged particles is to surround the particle source with an applied magnetic channel. Charged particles are trapped and move along the lines of flux. By introducing expanding lines of force gradually along the magnetic channel, the velocity component perpendicular to the lines of force is transferred to the parallel one. However, efficient operation of the IEC requires a null magnetic field at the core of the device. In order to achieve this, Momota and Miley have proposed a pair of magnetic coils anti-parallel to the magnetic channel creating a null hexapole magnetic field region necessary for the IEC fusion core. Numerically, collimation of 300 eV electrons without a stabilization coil was demonstrated to approach 95% at a profile corresponding to Vsolenoid = 20.0V, Ifloating = 2.78A, Isolenoid = 4.05A while collimation of electrons with stabilization coil present was demonstrated to reach 69% at a profile corresponding to Vsolenoid = 7.0V, Istab = 1.1A, Ifloating = 1.1A, Isolenoid = 1.45A. Experimentally, collimation of electrons with stabilization coil present was demonstrated experimentally to be 35% at 100 eV and reach a peak of 39.6% at 50eV with a profile corresponding to Vsolenoid = 7.0V, Istab = 1.1A, Ifloating = 1.1A, Isolenoid = 1.45A and collimation of 300 eV electrons without a stabilization coil was demonstrated to approach 49% at a profile corresponding to Vsolenoid = 20.0V, Ifloating = 2.78A, Isolenoid = 4.05A 6.4% of the 300eV electrons’ initial velocity is directed to the collector plates. The remaining electrons are trapped by the collimator’s magnetic field. These particles oscillate around the null field region several hundred times and eventually escape to the collector plates. At a solenoid voltage profile of 7 Volts, 100 eV electrons are collimated with wall and perpendicular component losses of 31%. Increasing the electron energy beyond 100 eV increases the wall losses by 25% at 300 eV. Ultimately it was determined that a field strength deriving from 9.5 MAT/m would be required to collimate 14.7 MeV fusion protons from d-3He fueled IEC fusion core. The concept of the proton collimator has been proven to be effective to transform an isotropic source into a collimated flow of particles ripe for direct energy conversion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A smart solar photovoltaic grid system is an advent of innovation coherence of information and communications technology (ICT) with power systems control engineering via the internet [1]. This thesis designs and demonstrates a smart solar photovoltaic grid system that is selfhealing, environmental and consumer friendly, but also with the ability to accommodate other renewable sources of energy generation seamlessly, creating a healthy competitive energy industry and optimising energy assets efficiency. This thesis also presents the modelling of an efficient dynamic smart solar photovoltaic power grid system by exploring the maximum power point tracking efficiency, optimisation of the smart solar photovoltaic array through modelling and simulation to improve the quality of design for the solar photovoltaic module. In contrast, over the past decade quite promising results have been published in literature, most of which have not addressed the basis of the research questions in this thesis. The Levenberg-Marquardt and sparse based algorithms have proven to be very effective tools in helping to improve the quality of design for solar photovoltaic modules, minimising the possible relative errors in this thesis. Guided by theoretical and analytical reviews in literature, this research has carefully chosen the MatLab/Simulink software toolbox for modelling and simulation experiments performed on the static smart solar grid system. The auto-correlation coefficient results obtained from the modelling experiments give an accuracy of 99% with negligible mean square error (MSE), root mean square error (RMSE) and standard deviation. This thesis further explores the design and implementation of a robust real-time online solar photovoltaic monitoring system, establishing a comparative study of two solar photovoltaic tracking systems which provide remote access to the harvested energy data. This research made a landmark innovation in designing and implementing a unique approach for online remote access solar photovoltaic monitoring systems providing updated information of the energy produced by the solar photovoltaic module at the site location. In addressing the challenge of online solar photovoltaic monitoring systems, Darfon online data logger device has been systematically integrated into the design for a comparative study of the two solar photovoltaic tracking systems examined in this thesis. The site location for the comparative study of the solar photovoltaic tracking systems is at the National Kaohsiung University of Applied Sciences, Taiwan, R.O.C. The overall comparative energy output efficiency of the azimuthal-altitude dual-axis over the 450 stationary solar photovoltaic monitoring system as observed at the research location site is about 72% based on the total energy produced, estimated money saved and the amount of CO2 reduction achieved. Similarly, in comparing the total amount of energy produced by the two solar photovoltaic tracking systems, the overall daily generated energy for the month of July shows the effectiveness of the azimuthal-altitude tracking systems over the 450 stationary solar photovoltaic system. It was found that the azimuthal-altitude dual-axis tracking systems were about 68.43% efficient compared to the 450 stationary solar photovoltaic systems. Lastly, the overall comparative hourly energy efficiency of the azimuthal-altitude dual-axis over the 450 stationary solar photovoltaic energy system was found to be 74.2% efficient. Results from this research are quite promising and significant in satisfying the purpose of the research objectives and questions posed in the thesis. The new algorithms introduced in this research and the statistical measures applied to the modelling and simulation of a smart static solar photovoltaic grid system performance outperformed other previous works in reviewed literature. Based on this new implementation design of the online data logging systems for solar photovoltaic monitoring, it is possible for the first time to have online on-site information of the energy produced remotely, fault identification and rectification, maintenance and recovery time deployed as fast as possible. The results presented in this research as Internet of things (IoT) on smart solar grid systems are likely to offer real-life experiences especially both to the existing body of knowledge and the future solar photovoltaic energy industry irrespective of the study site location for the comparative solar photovoltaic tracking systems. While the thesis has contributed to the smart solar photovoltaic grid system, it has also highlighted areas of further research and the need to investigate more on improving the choice and quality design for solar photovoltaic modules. Finally, it has also made recommendations for further research in the minimization of the absolute or relative errors in the quality and design of the smart static solar photovoltaic module.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We did a numerical investigation of the propagation of short light pulses in the region of 1.55 mu m and the conversion efficiency (CE) for the four wave mixing generation (FWM) of ordinary and dispersion decreasing fibers for use in wavelength division multiplexing (WDM) systems, Our simulations studies three different profiles, linear, hyperbolic. and constant, One conclude that for all the profiles there is decrease of the conversion efficiency with the increase in the channel separation. The hyperbolic profile present a higher efficiency of around 1000 above in magnitude compared with the others profiles at 0.2 nm of channel separation. We calculate the conversion efficiency versus the fiber length for the three profiles. The conversion efficiency for the hyperbolic profile is higher when compared to the constant and linear profiles. The other interesting point of the hyperbolic profile is that the increase of the CE in the beginning of the fiber does not show my oscillation in the CE value (log eta), which was observed for the constant and linear profiles. For all the profiles there is an increase of the conversion efficiency with the increase of the pump power. The compression factor C-i for the generated FWM signal at omega(3) was measured along the DDF's and the constant profile fibers. One can conclude that with the use of decreasing dispersion profile (DDF) fibers one can have a control of the (CE) conversion efficiency and the compression factor of the four wave mixing (FWM) generation in WDM systems. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transportation system resilience has been the subject of several recent studies. To assess the resilience of a transportation network, however, it is essential to model its interactions with and reliance on other lifelines. In this work, a bi-level, mixed-integer, stochastic program is presented for quantifying the resilience of a coupled traffic-power network under a host of potential natural or anthropogenic hazard-impact scenarios. A two-layer network representation is employed that includes details of both systems. Interdependencies between the urban traffic and electric power distribution systems are captured through linking variables and logical constraints. The modeling approach was applied on a case study developed on a portion of the signalized traffic-power distribution system in southern Minneapolis. The results of the case study show the importance of explicitly considering interdependencies between critical infrastructures in transportation resilience estimation. The results also provide insights on lifeline performance from an alternative power perspective.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A wide range of non-destructive testing (NDT) methods for the monitoring the health of concrete structure has been studied for several years. The recent rapid evolution of wireless sensor network (WSN) technologies has resulted in the development of sensing elements that can be embedded in concrete, to monitor the health of infrastructure, collect and report valuable related data. The monitoring system can potentially decrease the high installation time and reduce maintenance cost associated with wired monitoring systems. The monitoring sensors need to operate for a long period of time, but sensors batteries have a finite life span. Hence, novel wireless powering methods must be devised. The optimization of wireless power transfer via Strongly Coupled Magnetic Resonance (SCMR) to sensors embedded in concrete is studied here. First, we analytically derive the optimal geometric parameters for transmission of power in the air. This specifically leads to the identification of the local and global optimization parameters and conditions, it was validated through electromagnetic simulations. Second, the optimum conditions were employed in the model for propagation of energy through plain and reinforced concrete at different humidity conditions, and frequencies with extended Debye's model. This analysis leads to the conclusion that SCMR can be used to efficiently power sensors in plain and reinforced concrete at different humidity levels and depth, also validated through electromagnetic simulations. The optimization of wireless power transmission via SMCR to Wearable and Implantable Medical Device (WIMD) are also explored. The optimum conditions from the analytics were used in the model for propagation of energy through different human tissues. This analysis shows that SCMR can be used to efficiently transfer power to sensors in human tissue without overheating through electromagnetic simulations, as excessive power might result in overheating of the tissue. Standard SCMR is sensitive to misalignment; both 2-loops and 3-loops SCMR with misalignment-insensitive performances are presented. The power transfer efficiencies above 50% was achieved over the complete misalignment range of 0°-90° and dramatically better than typical SCMR with efficiencies less than 10% in extreme misalignment topologies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the study of the spatial characteristics of the visual channels, the power spectrum model of visual masking is one of the most widely used. When the task is to detect a signal masked by visual noise, this classical model assumes that the signal and the noise are previously processed by a bank of linear channels and that the power of the signal at threshold is proportional to the power of the noise passing through the visual channel that mediates detection. The model also assumes that this visual channel will have the highest ratio of signal power to noise power at its output. According to this, there are masking conditions where the highest signal-to-noise ratio (SNR) occurs in a channel centered in a spatial frequency different from the spatial frequency of the signal (off-frequency looking). Under these conditions the channel mediating detection could vary with the type of noise used in the masking experiment and this could affect the estimation of the shape and the bandwidth of the visual channels. It is generally believed that notched noise, white noise and double bandpass noise prevent off-frequency looking, and high-pass, low-pass and bandpass noises can promote it independently of the channel's shape. In this study, by means of a procedure that finds the channel that maximizes the SNR at its output, we performed numerical simulations using the power spectrum model to study the characteristics of masking caused by six types of one-dimensional noise (white, high-pass, low-pass, bandpass, notched, and double bandpass) for two types of channel's shape (symmetric and asymmetric). Our simulations confirm that (1) high-pass, low-pass, and bandpass noises do not prevent the off-frequency looking, (2) white noise satisfactorily prevents the off-frequency looking independently of the shape and bandwidth of the visual channel, and interestingly we proved for the first time that (3) notched and double bandpass noises prevent off-frequency looking only when the noise cutoffs around the spatial frequency of the signal match the shape of the visual channel (symmetric or asymmetric) involved in the detection. In order to test the explanatory power of the model with empirical data, we performed six visual masking experiments. We show that this model, with only two free parameters, fits the empirical masking data with high precision. Finally, we provide equations of the power spectrum model for six masking noises used in the simulations and in the experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a monitoring system devoted to small sized photovoltaic (PV) power plants. The system is characterized by: a high level of integration; a low cost, when compared to the cost of the PV system to be monitored; and an easy installation in the majority of the PV plants with installed power of some kW. The system is able to collect, store, process and display electrical and meteorological parameters that are crucial when monitoring PV facilities. The identification of failures in the PV system and the elaboration of performance analysis of such facilities are other important characteristics of the developed system. The access to the information about the monitored facilities is achieved by using a web application, which was developed with a focus on the mobile devices. In addition, there is the possibility of an integration between the developed monitoring system and the central supervision system of Martifer Solar (a company focused on the development, operation and maintenance of PV systems).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, the 380V DC and 48V DC distribution systems have been extensively studied for the latest data centers. It is widely believed that the 380V DC system is a very promising candidate because of its lower cable cost compared to the 48V DC system. However, previous studies have not adequately addressed the low reliability issue with the 380V DC systems due to large amount of series connected batteries. In this thesis, a quantitative comparison for the two systems has been presented in terms of efficiency, reliability and cost. A new multi-port DC UPS with both high voltage output and low voltage output is proposed. When utility ac is available, it delivers power to the load through its high voltage output and charges the battery through its low voltage output. When utility ac is off, it boosts the low battery voltage and delivers power to the load form the battery. Thus, the advantages of both systems are combined and the disadvantages of them are avoided. High efficiency is also achieved as only one converter is working in either situation. Details about the design and analysis of the new UPS are presented. For the main AC-DC part of the new UPS, a novel bridgeless three-level single-stage AC-DC converter is proposed. It eliminates the auxiliary circuit for balancing the capacitor voltages and the two bridge rectifier diodes in previous topology. Zero voltage switching, high power factor, and low component stresses are achieved with this topology. Compared to previous topologies, the proposed converter has a lower cost, higher reliability, and higher efficiency. The steady state operation of the converter is analyzed and a decoupled model is proposed for the converter. For the battery side converter as a part of the new UPS, a ZVS bidirectional DC-DC converter based on self-sustained oscillation control is proposed. Frequency control is used to ensure the ZVS operation of all four switches and phase shift control is employed to regulate the converter output power. Detailed analysis of the steady state operation and design of the converter are presented. Theoretical, simulation, and experimental results are presented to verify the effectiveness of the proposed concepts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper focuses on tests of photovoltaic systems in order to address two case studies with silicon monocrystalline and silicon polycrystalline panels, respectively. The first case is an identification of the three parameters of the single-diode equivalent circuit for modelling photovoltaic systems with conclusion about the inevitably age degradation. A comparison between experimental observed and computed I-V and V-P characteristics curves is carried out at standard test conditions. The second case is an experimental observation on a photovoltaic system connected to an electric grid in what regards the quality of the energy injected into the grid. A measuring of the harmonic content in the voltage and in the current waveforms at the terminals of the photovoltaic system is carried out in order to conclude about the conformity with the Standard EN 50160 and the IEEE 519-1992, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, the measurement and analysis of the electromagnetic radiated emissions from the wireless power transfer system is reported. The aim is to evaluate the level of the electromagnetic field produced by the magnetic resonance wireless power transfer system. Due to the advances of the wireless power transfer technology, it becomes feasible to apply the wireless power transfer in the electric vehicles charging. Among the existent wireless power transfer technologies, the magnetic resonant coupling is proven to be the most suitable for this task. Because of strong electromagnetic field generated by wireless power transfer system the electromagnetic compatibility has become an important issue.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a control process and frequency adjustment based on the magnetic core reactor for electric vehicle battery charger. Since few decades ago, there have been significant developments in technologies used in wireless power transfer systems, namely in battery charger. In the wireless power transfer systems is essential that the frequency of the primary circuit be equal to the frequency of the secondary circuit so there is the maximum energy transfer. The magnetic core reactor allows controlling the frequencies on both sides of the transmission and reception circuits. Also, the assembly diagrams and test results are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An integrated mathematical model for the simulation of an offshore wind system performance is presented in this paper. The mathematical model considers an offshore variable-speed turbine in deep water equipped with a permanent magnet synchronous generator using multiple point full-power clamped three-level converter, converting the energy of a variable frequency source in injected energy into the electric network with constant frequency, through a HVDC transmission submarine cable. The mathematical model for the drive train is a concentrate two mass model which incorporates the dynamic for the blades of the wind turbine, tower and generator due to the need to emulate the effects of the wind and the floating motion. Controller strategy considered is a proportional integral one. Also, pulse width modulation using space vector modulation supplemented with sliding mode is used for trigger the transistors of the converter. Finally, a case study is presented to access the system performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present thesis is focused on wave energy, which is a particular kind of ocean energy, and is based on the activity carried out during the EU project SEA TITAN. The main scope of this work is the design of a power electronic section for an innovative wave energy extraction system based on a switched-reluctance machine. In the first chapter, the general features of marine wave energy harvesting are treated. The concept of Wave Energy Converter (WEC) is introduced as well as the mathematical description of the waves, their characterization and measurement, the WEC classification, the operating principles and the standardization framework. Also, detailed considerations on the environmental impact are presented. The SEA TITAN project is briefly described. The second chapter is dedicated to the technical issues of the SEA TITAN project, such as the operating principle, the performance optimization carried out in the project, the main innovations as well as interesting demonstrations on the behavior of the generator and its control. In the third chapter, the power electronics converters of SEA TITAN are described, and the design choices, procedures and calculations are shown, with a further insight into the application given by analyzing the MATLAB Simulink model of the system and its control scheme. Experimental tests are reported in the fourth chapter, with graphs and illustrations of the power electronic apparatus interfaced with the real machine. Finally, the conclusion in the fifth chapter offers a global overview of the project and opens further development pathways.