853 resultados para Potential applications


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dendrimers are nonviral vectors that have attracted interest on account of a number of features. They are structurally versatile because their size, shape, and surface charge can be selectively altered. Here we examine the functions of a new family of composite dendrimers that were synthesized with lipidic amino acid cores. These dendrimers are bifunctional because they are characterized by positively charged (lysine) modules for interaction with nucleic acids and neutral lipidic moieties for membrane lipid-bilayer transit. We assessed their structure-function correlations by a combination of molecular and biophysical techniques. Our assessment revealed an unexpected pleitropy of functions subserved by these vectors that included plasmid and oligonucleotide delivery. We also generated a firefly luciferase cell line in which we could modulate luciferase activity by RNA interference. We found that these vectors could also mediate RNA suppression of luciferase expression by delivering double-stranded luciferase transcripts generated in vitro. The structural uniqueness of these lipidic peptide dendrimers coupled with their ease and specificity of assembly and the versatility in their choice of cargo, puts them in a new category of macromolecule carriers. These vectors, therefore, have potential applications as epigenetic modifiers of gene function. (C) 2004 Wiley-Liss, Inc. and the American Pharmacists Association.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reviews the recent research and development of clay-based polymer nanocomposites. Clay minerals, due to their unique layered structure, rich intercalation chemistry and availability at low cost, are promising nanoparticle reinforcements for polymers to manufacture low-cost, lightweight and high performance nanocomposites. We introduce briefly the structure, properties and surface modification of clay minerals, followed by the processing and characterization techniques of polymer nanocomposites. The enhanced and novel properties of such nanocomposites are then discussed, including mechanical, thermal, barrier, electrical conductivity, biodegradability among others. In addition, their available commercial and potential applications in automotive, packaging, coating and pigment, electrical materials, and in particular biomedical fields are highlighted. Finally, the challenges for the future are discussed in terms of processing, characterization and the mechanisms governing the behaviour of these advanced materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A methodological framework for conducting a systematic, mostly qualitative, meta-synthesis of community-based rehabilitation (CBR) project evaluation reports is described. Developed in the course of an international pilot study, the framework proposes a systematic review process in phases which are strongly collaborative, methodologically rigorous and detailed. Through this suggested process, valuable descriptive data about CBR practice, strategies and outcomes may be synthesized. It is anticipated that future application of this methodology will contribute to an improved evidence base for CBR, which will facilitate the development of more appropriate policy and practice guidelines for disability service delivery in developing countries. The methodology will also have potential applications in areas beyond CBR, which are similarly. evidence poor' (lacking empirical research) but 'data rich' (with plentiful descriptive and evaluative reports).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conotoxins, disulfide-rich peptides from the venom of cone snails, have created much excitement over recent years due to their potency and specificity for ion channels and their therapeutic potential. One recently identified conotoxin, MrIA, a 13-residue member of the chi-conotoxin family, inhibits the human norepinephrine transporter (NET) and has potential applications in the treatment of pain. In the current study, we show that the, beta-hairpin structure of native MrIA is retained in a synthetic cyclic version, as is biological activity at the NET. Furthermore, the cyclic version has increased resistance to trypsin digestion relative to the native peptide, an intriguing result because the cleavage site for the trypsin is not close to the cyclization site. The use of peptides as drugs is generally hampered by susceptibility to proteolysis, and so, the increase in enzymatic stability against trypsin observed in the current study may be useful in improving the therapeutic potential of MrIA. Furthermore, the structure reported here for cyclic MrIA represents a new topology among a growing number of circular disulfide-rich peptides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By using a complex field with a symmetric combination of electric and magnetic fields, a first-order covariant Lagrangian for Maxwell's equations is obtained, similar to the Lagrangian for the Dirac equation. This leads to a dual-symmetric quantum electrodynamic theory with an infinite set of local conservation laws. The dual symmetry is shown to correspond to a helical phase, conjugate to the conserved helicity. There is also a scaling symmetry, conjugate to the conserved entanglement. The results include a novel form of the photonic wavefunction, with a well-defined helicity number operator conjugate to the chiral phase, related to the fundamental dual symmetry. Interactions with charged particles can also be included. Transformations from minimal coupling to multi-polar or more general forms of coupling are particularly straightforward using this technique. The dual-symmetric version of quantum electrodynamics derived here has potential applications to nonlinear quantum optics and cavity quantum electrodynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many potential applications for sintered aluminium are limited by the poor fatigue properties of the material. In order to increase understanding of the fatigue mechanisms in sintered aluminium, fatigue tests were carried out on a sintered 2xxx series aluminium alloy, AMB-2712. The alloy has a fatigue endurance strength of approximately 145 MPa (R = 0.1). Three regions were identified on the fatigue fracture surfaces. Region I contains the initiation site and transgranular crack propagation. When the size of the cyclic plastic zone ahead of the crack becomes comparable to the grain size, microstructural damage at the crack tip results in a transition to intergranular propagation. Region 2 mainly contains intergranularly fractured material, whilst the final fracture area makes up Region 3, in the form of dimple coalescence and intergranular failure. Transgranular fractographic features observed on fatigued specimens include fissure-type striations, cross-hatched grains, furrowed grains and grains containing step-like features. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce a positive phase-space representation for fermions, using the most general possible multimode Gaussian operator basis. The representation generalizes previous bosonic quantum phase-space methods to Fermi systems. We derive equivalences between quantum and stochastic moments, as well as operator correspondences that map quantum operator evolution onto stochastic processes in phase space. The representation thus enables first-principles quantum dynamical or equilibrium calculations in many-body Fermi systems. Potential applications are to strongly interacting and correlated Fermi gases, including coherent behavior in open systems and nanostructures described by master equations. Examples of an ideal gas and the Hubbard model are given, as well as a generic open system, in order to illustrate these ideas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study and practice of knowledge management has grown rapidly since the 90s, driven by social, economic, and technological trends. Tourism has been slow in adopting this app oach due to not only a lack of gearing between researchers and tourism, but also to a 'hostile' knowledge adoption environment. Its acquisition would close the gap and also provide both insights and potential applications for tourism. Research in Australia supports the assertion that this field is a late adopter of knowledge management. In response, this paper provides a model for tourism. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oligo(ethylene glycol) (OEG) thiol self-assembled monolayer (SAM) decorated gold nanoparticles (AuNPs) have potential applications in bionanotechnology due to their unique property of preventing the nonspecific absorption of protein on the colloidal surface. For colloid-protein mixtures, a previous study (Zhang et al. J. Phys. Chem. A 2007, 111, 12229) has shown that the OEG SAM-coated AuNPs become unstable upon addition of proteins (BSA) above a critical concentration, c*. This has been explained as a depletion effect in the two-component system. Adding salt (NaCl) can reduce the value of c*; that is, reduce the stability of the mixture. In the present work, we study the influence of the nature of the added salt on the stability of this two-component colloid-protein system. It is shown that the addition of various salts does not change the stability of either protein or colloid in solution in the experimental conditions of this work, except that sodium sulfate can destabilize the colloidal solutions. In the binary mixtures, however, the stability of colloid-protein mixtures shows significant dependence on the nature of the salt: chaotropic salts (NaSCN, NaClO4, NaNO3, MgCl2) stabilize the system with increasing salt concentration, while kosmotropic salts (NaCl, Na2SO4, NH4Cl) lead to the aggregation of colloids with increasing salt concentration. These observations indicate that the Hofmeister effect can be enhanced in two-component systems; that is, the modification of the colloidal interface by ions changes significantly the effective depletive interaction via proteins. Real time SAXS measurements confirm in all cases that the aggregates are in an amorphous state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a theory of coherent propagation and energy or power transfer in a low-dimension array of coupled nonlinear waveguides. It is demonstrated that in the array with nonequal cores (e.g., with the central core) stable steady-state coherent multicore propagation is possible only in the nonlinear regime, with a power-controlled phase matching. The developed theory of energy or power transfer in nonlinear discrete systems is rather generic and has a range of potential applications including both high-power fiber lasers and ultrahigh-capacity optical communication systems. © 2012 American Physical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The curvature- or bend-sensing response of long-period gratings (LPGs) UV inscribed in D-shaped fiber has been investigated experimentally. Strong fiber-orientation dependence of the spectral response when such LPGs are subjected to bending at different directions has been observed and is shown to form the basis for a new class of single-device sensor with vector-sensing capability. Potential applications utilizing the linear response and unique bend-orientation characteristics of the devices are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Healthcare associated infections may arise from many sources, including patient?s own skin flora and the clinical environment, and inflict a significant burden within the health service. Adequate and effective skin antisepsis and surface disinfection are therefore essential factors in infection control. Current EPIC guidelines recommend 2 % chlorhexidine (CHG) in 70 % isopropyl alcohol (IPA) for skin antisepsis however poor penetration has been reported. Eucalyptus oil (EO) is a known permeation enhancer, producing synergistic antimicrobial activity when combined with CHG. In this current study, the antimicrobial efficacy of EO and its main constituent 1,8-cineole were assessed against a panel of clinically relevant microorganisms, alone and in combination with CHG. The superior antimicrobial efficacy of EO compared with 1,8-cineole, and synergistic effects with CHG against planktonic and biofilm cultures, confirmed its suitability for use in subsequent studies within this thesis. Impregnation of EO, CHG and IPA onto prototype hard surface disinfectant wipes demonstrated significantly improved efficacy compared with CHG/IPA wipes, with clear reductions in the time required to eliminate biofilms. Optimisation of the EO/CHG/IPA formulation resulted in the development of Euclean® wipes, with simulated-use and time kill studies confirming their ability to remove microbial surface contamination, prevent cross contamination and eliminate biofilms within 10 minutes. The employment of isothermal calorimetry provided additional information on the type and rate of antimicrobial activity possessed by Euclean® wipes. A clinical audit of the Euclean® wipes at Birmingham Children?s Hospital, Birmingham, U.K. revealed divided staff opinion, with the highest cited advantage and disadvantage concerning the odour. Finally, skin penetration and cell toxicity studies of EO/CHG biopatches and Euclean® solution developed during this study, revealed no permeation into human skin following biopatch application, and no significant toxicity. These current studies enhance the knowledge regarding EO and its potential applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neuronal network oscillations are a unifying phenomenon in neuroscience research, with comparable measurements across scales and species. Cortical oscillations are of central importance in the characterization of neuronal network function in health and disease and are influential in effective drug development. Whilst animal in vitro and in vivo electrophysiology is able to characterize pharmacologically induced modulations in neuronal activity, present human counterparts have spatial and temporal limitations. Consequently, the potential applications for a human equivalent are extensive. Here, we demonstrate a novel implementation of contemporary neuroimaging methods called pharmaco-magnetoencephalography. This approach determines the spatial profile of neuronal network oscillatory power change across the cortex following drug administration and reconstructs the time course of these modulations at focal regions of interest. As a proof of concept, we characterize the nonspecific GABAergic modulator diazepam, which has a broad range of therapeutic applications. We demonstrate that diazepam variously modulates ? (4–7 Hz), a (7–14 Hz), ß (15–25 Hz), and ? (30–80 Hz) frequency oscillations in specific regions of the cortex, with a pharmacodynamic profile consistent with that of drug uptake. We examine the relevance of these results with regard to the spatial and temporal observations from other modalities and the various therapeutic consequences of diazepam and discuss the potential applications of such an approach in terms of drug development and translational neuroscience.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Films of amorphous silicon (a-Si) were prepared by r.f. sputtering in a Ne plasma without the addition of hydrogen or a halogen. The d.c. dark electrical conductivity, he optical gap and the photoconductivity of the films were investigated for a range of preparation conditions, the sputtering gas pressure, P, the target-substrate spacing, d, the self-bias voltage, Vsb, on the target and the substrate temperature, Ts. The dependence of the electrical and optical properties on these conditions showed that various combinations of P, d and Vsb, at a constant Ts, giving the same product (Pd/V sb) result in films with similar properties, provided that P, d and Vsb remain vithin a certain range. Variation of Pd/Vsb between about 0.2 and 0.8 rrTorr.cm!V varied the dark conductivity over about 4 orders of magnitude, the optical gap by 0.5 eV and the photoconductivity over 4-5 orders of magnitude. This is attributed to controlling the density-of-states distribution in the mobility gap. The temperature-dependence of photoconductivity and the photoresponse of undoped films are in support of this conclusion. Films prepared at relatively high (Pd/Vsb) values and Ts=300 ºc: exhibited low dark-conductivity and high thermal activation energy, optical gap and photoresponse, characteristic properties of a 'low density-of-states material. P-type doping with group-Ill elements (Al, B and Ga) by sputtering from a composite target or from a predoped target (B-.doped) was investigated. The systematic variation of room-temperature conductivity over many orders of magnitude and a Fermi-level shift of about 0.7 eV towards the valence-band edge suggest that substitutional doping had taken place. The effects of preparation conditions on doping efficiency were also investigated. The post-deposition annealing of undoped and doped films were studied for a temperature range from 250 ºC to 470 ºC. It was shown that annealing enhanced the doping efficiency considerably, although it had little effect on the basic material (a-Si) prepared at the optimum conditions (Pd/Vsb=0.8 mTorr.cm/V and Ts=300 $ºC). Preliminary experiments on devices imply potential applications of the present material, such as p-n and MS junctions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis documents the design, manufacture and testing of a passive and non-invasive micro-scale planar particle-from-fluid filter for segregating cell types from a homogeneous suspension. The microfluidics system can be used to separate spermatogenic cells from testis biopsy samples, providing a mechanism for filtrate retrieval for assisted reproduction therapy. The system can also be used for point-of-service diagnostics applications for hospitals, lab-on-a-chip pre-processing and field applications such as clinical testing in the third world. Various design concepts are developed and manufactured, and are assessed based on etched structure morphology, robustness to variations in the manufacturing process, and design impacts on fluid flow and particle separation characteristics. Segregation was measured using image processing algorithms that demonstrate efficiency is more than 55% for 1 µl volumes at populations exceeding 1 x 107. the technique supports a significant reduction in time over conventional processing, in the separation and identification of particle groups, offering a potential reduction in the associated cost of the targeted procedure. The thesis has developed a model of quasi-steady wetting flow within the micro channel and identifies the forces across the system during post-wetting equalisation. The model and its underlying assumptions are validated empirically in microfabricated test structures through a novel Micro-Particle Image Velocimetry technique. The prototype devices do not require ancillary equipment nor additional filtration media, and therefore offer fewer opportunities for sample contamination over conventional processing methods. The devices are disposable with minimal reagent volumes and process waste. Optimal processing parameters and production methods are identified with any improvements that could be made to enhance their performance in a number of identified potential applications.