910 resultados para Portland cement concrete.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reinforced concrete corbels have been analysed using the nonlinear finite element method. An elasto-plastic-cracking constitutive formulation using Huber-Hencky-Mises yield surface augmented with a tension cut-off is employed. Smeared-fixed cracking with mesh-dependent strain softening is employed to obtain objective results. Multiple non-orthogonal cracking and opening and closing of cracks are permitted. The model and the formulation are verified with respect to available numerical solution for an RC corbel. Results of analyses of nine reinforced concrete corbels are presented and compared with experimental results. Nonlinear finite element analysis of reinforced concrete structures is shown to be a complement and also a feasible alternative to laboratory testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Load-deflection curves for a notched beam under three-point load are determined using the Fictitious Crack Model (FCM) and Blunt Crack Model (BCM). Two values of fracture energy GF are used in this analysis: (i) GF obtained from the size effect law and (ii) GF obtained independently of the size effect. The predicted load-deflection diagrams are compared with the experimental ones obtained for the beams tested by Jenq and Shah. In addition, the values of maximum load (Pmax) obtained by the analyses are compared with the experimental ones for beams tested by Jenq and Shah and by Bažant and Pfeiffer. The results indicate that the descending portion of the load-deflection curve is very sensitive to the GF value used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rammed earth is used for load bearing walls of buildings and there is growing interest in this low carbon building material. This paper is focused on understanding the compaction characteristics and physical properties of compacted cement stabilised soil mixtures and cement stabilised rammed earth (CSRE). This experimental study addresses (a) influence of soil composition, cement content, time lag on compaction characteristics of stabilised soils and CSRE and (b) effect of moulding water content and density on compressive strength and water absorption of compacted cement stabilised soil mixes. Salient conclusions of the study are (a) compaction characteristics of soils are not affected by the addition of cement, (b) there is 50% fall in strength of CSRE for 10 h time lag, (c) compressive strength of compacted cement stabilised soil increases with increase in density irrespective of moulding moisture content and cement content, and (d) compressive strength increases with the increase in moulding water content and compaction of CSRE on the wet side of OMC is beneficial in terms of strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strength and behaviour of cement stabilised rammed earth (CSRE) is a scantily explored area. The present study is focused on the strength and elastic properties of CSRE. Characteristics of CSRE are influenced by soil composition, density of rammed earth, cement and moisture content. The study is focused on examining (a) role of clay content of the soil on strength of CSRE and arriving at optimum clay fraction of the soil mix, (b) influence of moisture content, cement content and density on strength and (c) stress-strain relationships and elastic properties for CSRE. Major conclusions are (a) there is considerable difference between dry and wet compressive strength of CSRE and the wet to dry strength ratio depends upon the clay fraction of soil mix and cement content, (b) optimum clay fraction yielding maximum compressive strength for CSRE is about 16%, (c) strength of CSRE is highly sensitive to density and for a 20% increase in density the strength increases by 300-500% and (d) in dry state the ultimate strain at failure for CSRE is as high as 1.5%, which is unusual for brittle materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mode I and mode II fracture toughness and the critical strain energy release rate for different concrete-concrete jointed interfaces are experimentally determined using the Digital Image Correlation technique. Concrete beams having different compressive strength materials on either side of a centrally placed vertical interface are prepared and tested under three-point bending in a closed loop servo-controlled testing machine under crack mouth opening displacement control. Digital images are captured before loading (undeformed state) and at different instances of loading. These images are analyzed using correlation techniques to compute the surface displacements, strain components, crack opening and sliding displacements, load-point displacement, crack length and crack tip location. It is seen that the CMOD and vertical load-point displacement computed using DIC analysis matches well with those measured experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notched three point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/s and during the fracture process acoustic emissions (AE) were simultaneously monitored. It was observed that AE energy could be related to fracture energy. An experimental study was done to understand the behavior of AE energy with parameters of concrete like its strength and size. In this study, AE energy was used as a quantitative measure of size independent specific fracture energy of concrete beams and the concepts of boundary effect and local fracture energy were used to obtain size independent AE energy from which size independent fracture energy was obtained. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that fatigue in concrete causes excessive deformations and cracking leading to structural failures. Due to quasi-brittle nature of concrete and formation of a fracture process zone, the rate of fatigue crack growth depends on a number of parameters, such as, the tensile strength, fracture toughness, loading ratio and most importantly the structural size. In this work, an analytical model is proposed for estimating the fatigue crack growth in concrete by using the concepts of dimensional analysis and including the above parameters. Knowing the governed and the governing parameters of the physical problem and by using the concepts of self-similarity, a relationship is obtained between different parameters involved. It is shown that the proposed fatigue law is able to capture the size effect in plain concrete and agrees well with different experimental results. Through a sensitivity analysis, it is shown that the structural size plays a dominant role followed by loading ratio and the initial crack length in fatigue crack propagation. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rammed-earth wall is a monolithic construction made by compacting processed soil in progressive layers in a rigid formwork. There is a growing interest in using this low-embodied-carbon building material in buildings. The paper investigates the strength and structural behavior of story-high cement-stabilized rammed-earth (CSRE) walls, reviews literature on the strength of CSRE, and discusses results of the compressive strength of CSRE prisms, wallettes, and story-high walls. The strength of the story-high wall was compared with the strength of wallettes and prisms. There is a nearly 30% reduction in strength as the height-to-thickness ratio increases from about 5 to 20. The ultimate compressive strength of CSRE walls predicted using the tangent modulus theory is in close agreement with the experimental values. The shear failures noticed in the story-high walls resemble the shear failures of short-height prism and wallette specimens. The paper ends with a discussion of structural design and characteristic compressive strength of CSRE walls. DOI: 10.1061/(ASCE)MT.1943-5533.0000155. (C) 2011 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents methodologies for fracture analysis of concrete structural components with and without considering tension softening effect. Stress intensity factor (SIF) is computed by using analytical approach and finite element analysis. In the analytical approach, SW accounting for tension softening effect has been obtained as the difference of SIP obtained using linear elastic fracture mechanics (LEFM) principles and SIP due to closing pressure. Superposition principle has been used by accounting for non-linearity in incremental form. SW due to crack closing force applied on the effective crack face inside the process zone has been computed using Green's function approach. In finite element analysis, the domain integral method has been used for computation of SIR The domain integral method is used to calculate the strain energy release rate and SIF when a crack grows. Numerical studies have been conducted on notched 3-point bending concrete specimen with and without considering the cohesive stresses. It is observed from the studies that SW obtained from the finite element analysis with and without considering the cohesive stresses is in good agreement with the corresponding analytical value. The effect of cohesive stress on SW decreases with increase of crack length. Further, studies have been conducted on geometrically similar structures and observed that (i) the effect of cohesive stress on SW is significant with increase of load for a particular crack length and (iii) SW values decreases with increase of tensile strength for a particular crack length and load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering cement based composites as chemically bonded ceramics (CBC) the consequent strength development with age is essentially a constant volume solidification process, such that the hydrated gel particles fill the space resulting in the compatible gel space ratios. Analysis has been done of the extensively used graphical method of mix design (British method of mix design) i.e., the relation between the compressive strength and the free water - cement ratio. By considering the strength (S) at w/c 0.5 (S-0.5) as the reference state to reflect the synergetic effects between constituents of concrete a generalized relationship obtained is of the form {S/S-0.5} = a + b {1/(w/c)}.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of silica from rice-husk for the production of various materials, including rice-husk ash-lime binder, has gained significance. In this context, the decomposition of husk, the properties of the silica ash, including its crystallization and the ash-lime reaction, are reviewed. The mechanism of ash-lime reaction is controlled mostly by the development of osmotic pressure. For lime-deficient ash-lime mixtures the reaction is complete in the initial few days and therefore no strength development is observed for such mortars in the later ages. The use of optimum ash/lime ratio is recommended for obtaining consistently good performance for the mortar. A method for the determination of this ratio is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the parameters in the two-parameter fracture model, i.e. the critical stress intensity factor and critical crack tip opening displacement for the fracture of plain concrete in Mode 1 for the given test configuration and geometry, considerable computational effort is necessary. A simple graphical method has been proposed using normalized fracture parameters for the three-point bend (3PB) notched specimen and the double-edged notched (DEN) specimen. A similar graphical method is proposed to compute the maximum load carrying capacity of a specimen, using the critical fracture parameters both for 3PB and DEN configurations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the details of an experimental study on punching shear strength and behaviour of reinforced concrete corner column connections in flat slabs; a quasi-empirical method is proposed for computing the punching shear strength. The method has also been extended for punching shear strength prediction at interior and edge column connections. The test results compare better with the strengths predicted by the proposed method than those by Ingvarson, Zaglool and Pollet available in the literature. Further, the experimental strengths of interior, edge and corner column connections have been compared with the strengths predicted by the proposed method and the two codes of practice, viz. ACI and BS code, to demonstrate the usefulness of the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper gives the details of the studies undertaken to examine the strength and behaviour of fibre-reinforced concrete corner column connections in flat slabs. Tests have been conducted on 16 specimens with varying reinforcement ratio, moment/shear ratio (load eccentricity) and volume fraction of fibres. A quasi-empirical method has been proposed for computing the punching shear strength. The method has also been extended to fibre-reinforced concrete interior column connections, tests on which are available in the literature. The test results have been compared with the strength predicted by the proposed method for corner column as well as interior column connections and a satisfactory agreement noticed.