896 resultados para Polyhedral sets
Resumo:
The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.
Resumo:
Multi-level concrete buildings requrre substantial temporary formwork structures to support the slabs during construction. The primary function of this formwork is to safely disperse the applied loads so that the slab being constructed, or the portion of the permanent structure already constructed, is not overloaded. Multi-level formwork is a procedure in which a limited number of formwork and shoring sets are cycled up the building as construction progresses. In this process, each new slab is supported by a number of lower level slabs. The new slab load is, essentially, distributed to these supporting slabs in direct proportion to their relative stiffness. When a slab is post-tensioned using draped tendons, slab lift occurs as a portion of the slab self-weight is balanced. The formwork and shores supporting that slab are unloaded by an amount equivalent to the load balanced by the post-tensioning. This produces a load distribution inherently different from that of a conventionally reinforced slab. Through , theoretical modelling and extensive on-site shore load measurement, this research examines the effects of post-tensioning on multilevel formwork load distribution. The research demonstrates that the load distribution process for post-tensioned slabs allows for improvements to current construction practice. These enhancements include a shortening of the construction period; an improvement in the safety of multi-level form work operations; and a reduction in the quantity of form work materials required for a project. These enhancements are achieved through the general improvement in safety offered by post-tensioning during the various formwork operations. The research demonstrates that there is generally a significant improvement in the factors of safety over those for conventionally reinforced slabs. This improvement in the factor of safety occurs at all stages of the multi-level formwork operation. The general improvement in the factors of safety with post-tensioned slabs allows for a shortening of the slab construction cycle time. Further, the low level of load redistribution that occurs during the stripping operations makes post-tensioned slabs ideally suited to reshoring procedures. Provided the overall number of interconnected levels remains unaltered, it is possible to increase the number of reshored levels while reducing the number of undisturbed shoring levels without altering the factors of safety, thereby, reducing the overall quantity of formwork and shoring materials.
Resumo:
This dissertation develops the model of a prototype system for the digital lodgement of spatial data sets with statutory bodies responsible for the registration and approval of land related actions under the Torrens Title system. Spatial data pertain to the location of geographical entities together with their spatial dimensions and are classified as point, line, area or surface. This dissertation deals with a sub-set of spatial data, land boundary data that result from the activities performed by surveying and mapping organisations for the development of land parcels. The prototype system has been developed, utilising an event-driven paradigm for the user-interface, to exploit the potential of digital spatial data being generated from the utilisation of electronic techniques. The system provides for the creation of a digital model of the cadastral network and dependent data sets for an area of interest from hard copy records. This initial model is calibrated on registered control and updated by field survey to produce an amended model. The field-calibrated model then is electronically validated to ensure it complies with standards of format and content. The prototype system was designed specifically to create a database of land boundary data for subsequent retrieval by land professionals for surveying, mapping and related activities. Data extracted from this database are utilised for subsequent field survey operations without the need to create an initial digital model of an area of interest. Statistical reporting of differences resulting when subsequent initial and calibrated models are compared, replaces the traditional checking operations of spatial data performed by a land registry office. Digital lodgement of survey data is fundamental to the creation of the database of accurate land boundary data. This creation of the database is fundamental also to the efficient integration of accurate spatial data about land being generated by modem technology such as global positioning systems, and remote sensing and imaging, with land boundary information and other information held in Government databases. The prototype system developed provides for the delivery of accurate, digital land boundary data for the land registration process to ensure the continued maintenance of the integrity of the cadastre. Such data should meet also the more general and encompassing requirements of, and prove to be of tangible, longer term benefit to the developing, electronic land information industry.
Resumo:
The Queensland Coal Industry Employees Health Scheme was implemented in 1993 to provide health surveillance for all Queensland coal industry workers. Tt1e government, mining employers and mining unions agreed that the scheme should operate for seven years. At the expiry of the scheme, an assessment of the contribution of health surveillance to meet coal industry needs would be an essential part of determining a future health surveillance program. This research project has analysed the data made available between 1993 and 1998. All current coal industry employees have had at least one health assessment. The project examined how the centralised nature of the Health Scheme benefits industry by identi~)jng key health issues and exploring their dimensions on a scale not possible by corporate based health surveillance programs. There is a body of evidence that indicates that health awareness - on the scale of the individual, the work group and the industry is not a part of the mining industry culture. There is also growing evidence that there is a need for this culture to change and that some change is in progress. One element of this changing culture is a growth in the interest by the individual and the community in information on health status and benchmarks that are reasonably attainable. This interest opens the way for health education which contains personal, community and occupational elements. An important element of such education is the data on mine site health status. This project examined the role of health surveillance in the coal mining industry as a tool for generating the necessary information to promote an interest in health awareness. The Health Scheme Database provides the material for the bulk of the analysis of this project. After a preliminary scan of the data set, more detailed analysis was undertaken on key health and related safety issues that include respiratory disorders, hearing loss and high blood pressure. The data set facilitates control for confounding factors such as age and smoking status. Mines can be benchmarked to identify those mines with effective health management and those with particular challenges. While the study has confirmed the very low prevalence of restrictive airway disease such as pneu"moconiosis, it has demonstrated a need to examine in detail the emergence of obstructive airway disease such as bronchitis and emphysema which may be a consequence of the increasing use of high dust longwall technology. The power of the Health Database's electronic data management is demonstrated by linking the health data to other data sets such as injury data that is collected by the Department of l\1mes and Energy. The analysis examines serious strain -sprain injuries and has identified a marked difference between the underground and open cut sectors of the industry. The analysis also considers productivity and OHS data to examine the extent to which there is correlation between any pairs ofJpese and previously analysed health parameters. This project has demonstrated that the current structure of the Coal Industry Employees Health Scheme has largely delivered to mines and effective health screening process. At the same time, the centralised nature of data collection and analysis has provided to the mines, the unions and the government substantial statistical cross-sectional data upon which strategies to more effectively manage health and relates safety issues can be based.
Resumo:
Artificial neural network (ANN) learning methods provide a robust and non-linear approach to approximating the target function for many classification, regression and clustering problems. ANNs have demonstrated good predictive performance in a wide variety of practical problems. However, there are strong arguments as to why ANNs are not sufficient for the general representation of knowledge. The arguments are the poor comprehensibility of the learned ANN, and the inability to represent explanation structures. The overall objective of this thesis is to address these issues by: (1) explanation of the decision process in ANNs in the form of symbolic rules (predicate rules with variables); and (2) provision of explanatory capability by mapping the general conceptual knowledge that is learned by the neural networks into a knowledge base to be used in a rule-based reasoning system. A multi-stage methodology GYAN is developed and evaluated for the task of extracting knowledge from the trained ANNs. The extracted knowledge is represented in the form of restricted first-order logic rules, and subsequently allows user interaction by interfacing with a knowledge based reasoner. The performance of GYAN is demonstrated using a number of real world and artificial data sets. The empirical results demonstrate that: (1) an equivalent symbolic interpretation is derived describing the overall behaviour of the ANN with high accuracy and fidelity, and (2) a concise explanation is given (in terms of rules, facts and predicates activated in a reasoning episode) as to why a particular instance is being classified into a certain category.
Resumo:
Literally, the word compliance suggests conformity in fulfilling official requirements. The thesis presents the results of the analysis and design of a class of protocols called compliant cryptologic protocols (CCP). The thesis presents a notion for compliance in cryptosystems that is conducive as a cryptologic goal. CCP are employed in security systems used by at least two mutually mistrusting sets of entities. The individuals in the sets of entities only trust the design of the security system and any trusted third party the security system may include. Such a security system can be thought of as a broker between the mistrusting sets of entities. In order to provide confidence in operation for the mistrusting sets of entities, CCP must provide compliance verification mechanisms. These mechanisms are employed either by all the entities or a set of authorised entities in the system to verify the compliance of the behaviour of various participating entities with the rules of the system. It is often stated that confidentiality, integrity and authentication are the primary interests of cryptology. It is evident from the literature that authentication mechanisms employ confidentiality and integrity services to achieve their goal. Therefore, the fundamental services that any cryptographic algorithm may provide are confidentiality and integrity only. Since controlling the behaviour of the entities is not a feasible cryptologic goal,the verification of the confidentiality of any data is a futile cryptologic exercise. For example, there exists no cryptologic mechanism that would prevent an entity from willingly or unwillingly exposing its private key corresponding to a certified public key. The confidentiality of the data can only be assumed. Therefore, any verification in cryptologic protocols must take the form of integrity verification mechanisms. Thus, compliance verification must take the form of integrity verification in cryptologic protocols. A definition of compliance that is conducive as a cryptologic goal is presented as a guarantee on the confidentiality and integrity services. The definitions are employed to provide a classification mechanism for various message formats in a cryptologic protocol. The classification assists in the characterisation of protocols, which assists in providing a focus for the goals of the research. The resulting concrete goal of the research is the study of those protocols that employ message formats to provide restricted confidentiality and universal integrity services to selected data. The thesis proposes an informal technique to understand, analyse and synthesise the integrity goals of a protocol system. The thesis contains a study of key recovery,electronic cash, peer-review, electronic auction, and electronic voting protocols. All these protocols contain message format that provide restricted confidentiality and universal integrity services to selected data. The study of key recovery systems aims to achieve robust key recovery relying only on the certification procedure and without the need for tamper-resistant system modules. The result of this study is a new technique for the design of key recovery systems called hybrid key escrow. The thesis identifies a class of compliant cryptologic protocols called secure selection protocols (SSP). The uniqueness of this class of protocols is the similarity in the goals of the member protocols, namely peer-review, electronic auction and electronic voting. The problem statement describing the goals of these protocols contain a tuple,(I, D), where I usually refers to an identity of a participant and D usually refers to the data selected by the participant. SSP are interested in providing confidentiality service to the tuple for hiding the relationship between I and D, and integrity service to the tuple after its formation to prevent the modification of the tuple. The thesis provides a schema to solve the instances of SSP by employing the electronic cash technology. The thesis makes a distinction between electronic cash technology and electronic payment technology. It will treat electronic cash technology to be a certification mechanism that allows the participants to obtain a certificate on their public key, without revealing the certificate or the public key to the certifier. The thesis abstracts the certificate and the public key as the data structure called anonymous token. It proposes design schemes for the peer-review, e-auction and e-voting protocols by employing the schema with the anonymous token abstraction. The thesis concludes by providing a variety of problem statements for future research that would further enrich the literature.
Study of industrially relevant boundary layer and axisymmetric flows, including swirl and turbulence
Resumo:
Micropolar and RNG-based modelling of industrially relevant boundary layer and recirculating swirling flows is described. Both models contain a number of adjustable parameters and auxiliary conditions that must be either modelled or experimentally determined, and the effects of varying these on the resulting flow solutions is quantified. To these ends, the behaviour of the micropolar model for self-similar flow over a surface that is both stretching and transpiring is explored in depth. The simplified governing equations permit both analytic and numerical approaches to be adopted, and a number of closed form solutions (both exact and approximate) are obtained using perturbation and order of magnitude analyses. Results are compared with the corresponding Newtonian flow solution in order to highlight the differences between the micropolar and classical models, and significant new insights into the behaviour of the micropolar model are revealed for this flow. The behaviour of the RNG-bas based models for swirling flow with vortex breakdown zones is explored in depth via computational modelling of two experimental data sets and an idealised breakdown flow configuration. Meticulous modeling of upstream auxillary conditions is required to correctly assess the behavior of the models studied in this work. The novel concept of using the results to infer the role of turbulence in the onset and topology of the breakdown zone is employed.
Resumo:
Patterns of connectivity among local populations influence the dynamics of regional systems, but most ecological models have concentrated on explaining the effect of connectivity on local population structure using dynamic processes covering short spatial and temporal scales. In this study, a model was developed in an extended spatial system to examine the hypothesis that long term connectivity levels among local populations are influenced by the spatial distribution of resources and other habitat factors. The habitat heterogeneity model was applied to local wild rabbit populations in the semi-arid Mitchell region of southern central Queensland (the Eastern system). Species' specific population parameters which were appropriate for the rabbit in this region were used. The model predicted a wide range of long term connectivity levels among sites, ranging from the extreme isolation of some sites to relatively high interaction probabilities for others. The validity of model assumptions was assessed by regressing model output against independent population genetic data, and explained over 80% of the variation in the highly structured genetic data set. Furthermore, the model was robust, explaining a significant proportion of the variation in the genetic data over a wide range of parameters. The performance of the habitat heterogeneity model was further assessed by simulating the widely reported recent range expansion of the wild rabbit into the Mitchell region from the adjacent, panmictic Western rabbit population system. The model explained well the independently determined genetic characteristics of the Eastern system at different hierarchic levels, from site specific differences (for example, fixation of a single allele in the population at one site), to differences between population systems (absence of an allele in the Eastern system which is present in all Western system sites). The model therefore explained the past and long term processes which have led to the formation and maintenance of the highly structured Eastern rabbit population system. Most animals exhibit sex biased dispersal which may influence long term connectivity levels among local populations, and thus the dynamics of regional systems. When appropriate sex specific dispersal characteristics were used, the habitat heterogeneity model predicted substantially different interaction patterns between female-only and combined male and female dispersal scenarios. In the latter case, model output was validated using data from a bi-parentally inherited genetic marker. Again, the model explained over 80% of the variation in the genetic data. The fact that such a large proportion of variability is explained in two genetic data sets provides very good evidence that habitat heterogeneity influences long term connectivity levels among local rabbit populations in the Mitchell region for both males and females. The habitat heterogeneity model thus provides a powerful approach for understanding the large scale processes that shape regional population systems in general. Therefore the model has the potential to be useful as a tool to aid in the management of those systems, whether it be for pest management or conservation purposes.
Resumo:
Typical daily decision-making process of individuals regarding use of transport system involves mainly three types of decisions: mode choice, departure time choice and route choice. This paper focuses on the mode and departure time choice processes and studies different model specifications for a combined mode and departure time choice model. The paper compares different sets of explanatory variables as well as different model structures to capture the correlation among alternatives and taste variations among the commuters. The main hypothesis tested in this paper is that departure time alternatives are also correlated by the amount of delay. Correlation among different alternatives is confirmed by analyzing different nesting structures as well as error component formulations. Random coefficient logit models confirm the presence of the random taste heterogeneity across commuters. Mixed nested logit models are estimated to jointly account for the random taste heterogeneity and the correlation among different alternatives. Results indicate that accounting for the random taste heterogeneity as well as inter-alternative correlation improves the model performance.
Resumo:
Conifers are resistant to attack from a large number of potential herbivores or pathogens. Previous molecular and biochemical characterization of selected conifer defence systems support a model of multigenic, constitutive and induced defences that act on invading insects via physical, chemical, biochemical or ecological (multitrophic) mechanisms. However, the genomic foundation of the complex defence and resistance mechanisms of conifers is largely unknown. As part of a genomics strategy to characterize inducible defences and possible resistance mechanisms of conifers against insect herbivory, we developed a cDNA microarray building upon a new spruce (Picea spp.) expressed sequence tag resource. This first-generation spruce cDNA microarray contains 9720 cDNA elements representing c. 5500 unique genes. We used this array to monitor gene expression in Sitka spruce (Picea sitchensis) bark in response to herbivory by white pine weevils (Pissodes strobi, Curculionidae) or wounding, and in young shoot tips in response to western spruce budworm (Choristoneura occidentalis, Lepidopterae) feeding. Weevils are stem-boring insects that feed on phloem, while budworms are foliage feeding larvae that consume needles and young shoot tips. Both insect species and wounding treatment caused substantial changes of the host plant transcriptome detected in each case by differential gene expression of several thousand array elements at 1 or 2 d after the onset of treatment. Overall, there was considerable overlap among differentially expressed gene sets from these three stress treatments. Functional classification of the induced transcripts revealed genes with roles in general plant defence, octadecanoid and ethylene signalling, transport, secondary metabolism, and transcriptional regulation. Several genes involved in primary metabolic processes such as photosynthesis were down-regulated upon insect feeding or wounding, fitting with the concept of dynamic resource allocation in plant defence. Refined expression analysis using gene-specific primers and real-time PCR for selected transcripts was in agreement with microarray results for most genes tested. This study provides the first large-scale survey of insect-induced defence transcripts in a gymnosperm and provides a platform for functional investigation of plant-insect interactions in spruce. Induction of spruce genes of octadecanoid and ethylene signalling, terpenoid biosynthesis, and phenolic secondary metabolism are discussed in more detail.
Resumo:
The hydrodynamic environment “created” by bioreactors for the culture of a tissue engineered construct (TEC) is known to influence cell migration, proliferation and extra cellular matrix production. However, tissue engineers have looked at bioreactors as black boxes within which TECs are cultured mainly by trial and error, as the complex relationship between the hydrodynamic environment and tissue properties remains elusive, yet is critical to the production of clinically useful tissues. It is well known in the chemical and biotechnology field that a more detailed description of fluid mechanics and nutrient transport within process equipment can be achieved via the use of computational fluid dynamics (CFD) technology. Hence, the coupling of experimental methods and computational simulations forms a synergistic relationship that can potentially yield greater and yet, more cohesive data sets for bioreactor studies. This review aims at discussing the rationale of using CFD in bioreactor studies related to tissue engineering, as fluid flow processes and phenomena have direct implications on cellular response such as migration and/or proliferation. We conclude that CFD should be seen by tissue engineers as an invaluable tool allowing us to analyze and visualize the impact of fluidic forces and stresses on cells and TECs.
Resumo:
Excessive grazing pressure is detrimental to plant productivity and may lead to declines in soil organic matter. Soil organic matter is an important source of plant nutrients and can enhance soil aggregation, limit soil erosion, and can also increase cation exchange and water holding capacities, and is, therefore, a key regulator of grassland ecosystem processes. Changes in grassland management which reverse the process of declining productivity can potentially lead to increased soil C. Thus, rehabilitation of areas degraded by overgrazing can potentially sequester atmospheric C. We compiled data from the literature to evaluate the influence of grazing intensity on soil C. Based on data contained within these studies, we ascertained a positive linear relationship between potential C sequestration and mean annual precipitation which we extrapolated to estimate global C sequestration potential with rehabilitation of overgrazed grassland. The GLASOD and IGBP DISCover data sets were integrated to generate a map of overgrazed grassland area for each of four severity classes on each continent. Our regression model predicted losses of soil C with decreased grazing intensity in drier areas (precipitation less than 333 mm yr(-1)), but substantial sequestration in wetter areas. Most (93%) C sequestration potential occurred in areas with MAP less than 1800 mm. Universal rehabilitation of overgrazed grasslands can sequester approximately 45 Tg C yr(-1), most of which can be achieved simply by cessation of overgrazing and implementation of moderate grazing intensity. Institutional level investments by governments may be required to sequester additional C.
Resumo:
Many of the costs associated with greenfield residential development are apparent and tangible. For example, regulatory fees, government taxes, acquisition costs, selling fees, commissions and others are all relatively easily identified since they represent actual costs incurred at a given point in time. However, identification of holding costs are not always immediately evident since by contrast they characteristically lack visibility. One reason for this is that, for the most part, they are typically assessed over time in an ever-changing environment. In addition, wide variations exist in development pipeline components: they are typically represented from anywhere between a two and over sixteen years time period - even if located within the same geographical region. Determination of the starting and end points, with regards holding cost computation, can also prove problematic. Furthermore, the choice between application of prevailing inflation, or interest rates, or a combination of both over time, adds further complexity. Although research is emerging in these areas, a review of the literature reveals attempts to identify holding cost components are limited. Their quantification (in terms of relative weight or proportionate cost to a development project) is even less apparent; in fact, the computation and methodology behind the calculation of holding costs varies widely and in some instances completely ignored. In addition, it may be demonstrated that ambiguities exists in terms of the inclusion of various elements of holding costs and assessment of their relative contribution. Yet their impact on housing affordability is widely acknowledged to be profound, with their quantification potentially maximising the opportunities for delivering affordable housing. This paper seeks to build on earlier investigations into those elements related to holding costs, providing theoretical modelling of the size of their impact - specifically on the end user. At this point the research is reliant upon quantitative data sets, however additional qualitative analysis (not included here) will be relevant to account for certain variations between expectations and actual outcomes achieved by developers. Although this research stops short of cross-referencing with a regional or international comparison study, an improved understanding of the relationship between holding costs, regulatory charges, and housing affordability results.
Resumo:
In November 2009 the researcher embarked on a project aimed at reducing the amount of paper used by Queensland University of Technology (QUT) staff in their daily workplace activities. The key goal was to communicate to staff that excessive printing has a tangible and negative effect on their workplace and local environment. The research objective was to better understand what motivates staff towards more ecologically sustainable printing practises, whilst meeting their job’s demands. The current study is built on previous research that found that one interface does not address the needs of all users when creating persuasive Human Computer Interaction (HCI) interventions targeting resource consumption. In response, the current study created and trialled software that communicates individual paper consumption in precise metrics. Based on preliminary research data different metric sets have been defined to address the different motivations and beliefs of user archetypes using descriptive and injunctive normative information.