999 resultados para Plant hybridization.
Resumo:
小麦条锈病(Puccinia striiformis f. sp. tritici)是世界性小麦病害,可导致受害小麦减产30%以上,甚至绝收。小麦条锈病在我国西南、华北麦区危害严重,四川麦区是小麦条锈病发病最重的地区之一,每年因条锈病流行造成小麦产量损失巨大。利用抗条锈病品种是控制该病害最安全、经济的有效途径,因此挖掘利用抗病新基因,开展抗病遗传基础研究是当前育种工作中面临的重要任务。 偏凸山羊草(Aegilops ventricosa,DDMvMv,2n=28)是一年生草本植物,起源于地中海西部沿岸地区,具有对小麦白粉病、锈病等高抗或免疫、耐盐、抗寒、蛋白质含量高等优良性状,是小麦遗传育种很好的种质资源。本研究以高抗条锈病的小麦—偏凸山羊草6Mv/6B代换系(Moisson 6Mv/6B)为材料,对其含有的带条锈病抗性基因的偏凸山羊草6Mv染色体在四川小麦背景中的传递情况、与小麦—簇毛麦双端体附加系所具有的白粉病抗性的聚合以及对Moisson 6Mv/6B进行电离辐射诱变筛选抗条锈病的小麦—偏凸山羊草易位系三个方面进行了研究。取得的主要研究结果如下: 1. Moisson 6Mv/6B与高感条锈病的四川地区普通小麦品种绵阳26、绵阳93-124和SW3243的杂种F1与其普通小麦亲本分别作为父、母本回交,通过对其BC1和F2的结实率、根尖细胞有丝分裂中期染色体的观察以及对条锈病抗性的鉴定,发现含6Mv染色体的F1植株作母本时的回交结实率(83.10%)普遍高于含6Mv染色体的F1植株作父本(48.61%),结实率与普通小麦基因型密切相关(χ2=34.15>>χ20.05=5.99(df=2));6Mv染色体在三种四川小麦中通过雌、雄配子传递的传递方式与其传递率间没有显著相关性,其传递率与普通小麦基因型呈显著相关性(χ2=6.42>χ20.05=5.99(df=2))。 2. Moisson 6Mv/6B与高抗白粉病的小麦—簇毛麦双端体附加系Pana(2n=42+2t)正反杂交,希望在聚合两者抗性的同时观察不同受体背景下的抗性反应。对Moisson 6Mv/6B和Pana正反杂交的结实率、杂交后代的农艺性状进行观察,并对杂交后代进行基因组荧光原位杂交(GISH)分析及条锈病和白粉病的抗性鉴定。结果表明Moisson 6Mv/6B作母本时杂交结实率(80.56%)高于Pana作母本时(58.33%),结实率与杂交方式间紧密相关(χ2=4.96>χ20.05=3.84(df=1));Moisson 6Mv/6B和Pana杂交后代株高比最高亲本高约10cm,成熟期也较两亲本提前两个星期左右;正反杂交后代中具有偏凸山羊草6Mv染色体的植株具有条锈病抗性,具有簇毛麦端体的植株具有白粉病抗性,同时筛选到4株含有偏凸山羊草和簇毛麦遗传物质并对条锈病和白粉病兼抗的材料,证明来自偏凸山羊草6Mv染色体的条锈病抗性与来自簇毛麦端体的白粉病抗性已经聚合在一起,且没有产生相互抑制的作用,暗示通过这两个抗性基因的聚合是完全能获得兼抗条锈病和白粉病的小麦新种质。 3. 对Moisson 6Mv/6B在减数分裂时期的成株进行总剂量为6Gy、辐射频率为120rad/min的60Co-γ射线辐射,对辐射植株自交后代进行农艺性状及根尖细胞有丝分裂中期染色体形态观察和条锈病抗性鉴定。结果为辐射植株自交结实率为2.22%,根尖细胞有丝分裂中期的染色体存在明显碎片,辐射自交后代植株对条锈病具有成株期抗性。 小麦—偏凸山羊草6Mv/6B代换系对条锈病抗性稳定,是培育条锈病抗性品种的良好供体。本研究证明在四川小麦背景中要利用该品种抗性,在结实数满足需要时,可将其作父本,亦可作母本,但关键是要选择好一个优良的受体基因型;同时其条锈病抗性与来自簇毛麦的白粉病抗性没有相互抑制作用,可将两者抗性有效聚合用于小麦育种中。 Wheat stripe rust (Puccinia striiformis f. sp. Tritici) is a worldwide disease of wheat, and could lead to victims of 30 percent or even total destruction of wheat production. Wheat stripe rust harms badly in China's southwest and North China. Sichuan province is one of the regions damaged by wheat stripe rust heavily. The use of resistant varieties is the most secure and economical way to control the wheat stripe rust. Therefore, it is essential to identify new disease-resistant genes and genetically research of disease resistance. Aegilops ventricosa (DDMvMv, 2n = 28) is an annual herbaceous plant, originating in the coastal areas of the western Mediterranean, with good characters such as resistance of wheat powdery, rust, salt, cold and high protein content. It is a good germplasm resource. In this study, the wheat- Aegilops ventricosa 6Mv/6B substitution line Moisson 6Mv/6B (highly resistant to the wheat stripe rust) was used to study on the transmission of chromosome 6Mv of Aegilops ventricosa in different genetic background of Sichuan wheat varieties, hybridization with wheat- Haynaldia villosa ditelosomic addition line Pana (highly resistant to the powdery mildew) and screening of wheat- Aegilops ventricosa translocation line by exposuring Moisson 6Mv/6B under ionizing radiation. The main results are as following: 1. Moisson 6Mv/6B was crossed with Sichuan wheat varieties mianyang26, mianyang93-124 and SW3243 (highly susceptible to stripe rust), respectively. Their F1 hybrids were further backcrossed as male and female to corresponding wheat varieties. The seed-setting rate, chromosomes confirmation in the mitotic metaphase of root tip cells, and resistance to stripe rust of the subsequent BC1 and F2 plants were investigated. The average seed-setting rate of backcross via 6Mv as female donor (83.10%) was higher than that of backcross via 6Mv as male donor (48.61%), suggesting that the seed-setting rate was associated with the wheat genotypes(χ2=34.15>>χ20.05=5.99(df=2)). In all analyzed populations, transmission frequencies of chromosome 6Mv were not correlated with the ways of 6Mv through male or through female. However, transmission frequencies of chromosome 6Mv were significantly correlated with Sichuan wheat genotypes(χ2=6.42>χ20.05=5.99(df=2)). 2. To aggregating the resistances to stripe rust and powdery mildew, as well as research on the resistance reactions in different genetic background, Moisson 6Mv/6B was reciprocally hybrided with the wheat- Haynaldia villosa ditelosomic addition line Pana (highly resistant to the powdery mildew). The seed-setting rate, agronomic characters, genomic in situ hybridization (GISH) of hybrid progenies,and resistances to stripe rust and powdery mildew were investigated. The results showed that the seed-setting rate of hybridization via Moisson 6Mv/6B as female donor (80.56%) was significant higher than that via Pana as female donor (58.33%). The seed-setting rate was associated with the hybrid methods (χ2 = 4.96> χ20.05 = 3.84 (df = 1)). The plant height of hybrid progenies was about 10 cm higher than Pana, the parent with maximum height. And the maturity of hybrid progenies was about two weeks earlier than that of the parents. In the hybrid progenies, the plants with the 6Mv chromosome have the resistance to stripe rust and the plants with the telosome from Haynaldia villosa have the resistance to powdery mildew. It was found that four plants with both the 6Mv chromosome and the telosome from Haynaldia villosa were resistant to stripe rust and powdery mildew. It indicated that the resistance to stripe rust and powdery mildew aggregated, and no mutual inhibition was found. It implied that the aggregation of the two resistance genes was able to provide the new wheat germplasm with the resistances to stripe rust and powdery mildew. 3. Moisson 6Mv/6B was irradiated with 60Co-γ rays of 6Gy (120rad/min) during meiosis. The agronomic characters and chromosomes confirmation in the mitotic metaphase of root tip cells,as well as resistance to stripe rust were investigated. The seed-setting rate of irradiated plants was only 2.22%. The chromosomes in mitotic metaphase had clear fragments. The resistance to stripe rust of progeny of irradiated plants was the adult-plant resistance. The wheat- Aegilops ventricosa 6Mv/6B substitution line is a good stripe rust resistance donor for its stabile resistance. Our study demonstrated that the key for use the resistance is to choose a good receptor. There is no difference between Moisson 6Mv/6B be the female and be the male if the seed number meets the requirement. At the same time, the stripe rust resistance of Moisson 6Mv/6B did not have the mutual inhibition with the powdery mildew resistance from Haynaldia villosa. It is able to aggregate the two resistances for wheat breeding.
Resumo:
青稞,是我国藏区居民对裸大麦的称谓,它不仅是藏民的主要食粮、燃料和牲畜饲料,而且也是啤酒、医药和保健品生产的原料;青稞不仅为藏区人民的健康和经济发展做出了很大的贡献,而且对人类健康和社会经济的可持续发展都有重要的意义。青藏高原是我国及世界上青稞分布和种植面积最大的地区,资源极其丰富。虽然从经典遗传直到分子标记对我国大麦遗传多样性都有研究,但研究手段、数量仍然不够深入,对我国大麦资源遗传多样性研究的信息非常有限,不能很好地满足大麦遗传研究和育种应用的需要,尤其是对西藏栽培大麦的遗传多样性的研究还只是刚刚开始,关于栽培青稞多态性的研究报道很少。本研究采用SSR标记和蛋白质电泳两类技术,从SSR标记位点、单体醇溶蛋白、B组醇溶蛋白和淀粉粒结合蛋白(SGP)等四个方面对我国青藏高原栽培青稞的遗传多样性进行了综合评价。 SSR标记具有基因组分布广泛、数量丰富、多态性高、容易检测、共显性、结果稳定可靠、实验重现性好、操作简单、经济、易于高通量分析等许多优点,被认为是用于遗传多样性、品种鉴定、物种的系统发育、亲缘关系及起源等研究的非常有效的分子标记。本研究采用SSR标记分析了64份青藏高原栽培青稞的遗传多样性,同时评估SSR标记在我国大麦育种和品种鉴定中的应用潜力。选择了30个已知作图位点SSR标记,其中25个标记与重要性状的控制位点连锁紧密。选择的30个SSR标记,5个未得到很好的扩增产物,3个无多态性。22个多态性SSR标记位点中,每位点检测出等位基因2~15个,共检测出等位基因132个,平均每位点6.0 个。各多态位点检测出基因型为2~11种,位点HVM33的基因型最多。各多态位点的多态信息指数为0.16~0.91, 平均为0.65。根据PIC值选择了13个SSR标记用于我国青藏高原栽培青稞基因型鉴定,这些标记的PIC值为0.6以上。结合PIC值和基因型差异,选择了8个多态信息含量高的SSR标记,构建了高效指纹图谱,此图谱能把64份材料完全区分。 贮藏蛋白电泳分析是研究相关编码蛋白基因多态性的非常有效的方法。大麦单体蛋白与小麦醇溶蛋白相对应,具有丰富的多态性,可用于大麦遗传多样性、品种鉴定和群体进化等研究。本研究通过A-PAGE电泳技术研究了84份青藏高原栽培青稞的单体醇溶蛋白多态性。大麦单体醇溶蛋白图谱与小麦醇溶蛋白电泳图谱类似,所分离的蛋白清晰地分为ω-,γ-,β-和α-四个部分。青藏高原栽培青稞单体醇溶蛋白具有丰富的多态性,84份青稞材料中存在43条不同的蛋白带,75种组合带谱;其中67种为单一材料所独有,另8种则分别包含了2-3份材料。每份材料中拥有醇溶蛋白带为6-16条,含有6-10条单体醇溶蛋白带材料较多。西藏和四川材料群体单体醇溶蛋白多态性不同,具有区域特异性。西藏材料中发现了40条不同蛋白带,3条特异带,46 种蛋白组合;四川材料中出现了40种不同蛋白带,26种条带组合, 3条特异带。基于单体蛋白多态性的聚类与材料的来源有一定的相关性。A-PAGE单体蛋白具有丰富的多态性,可作为遗传研究和品种鉴定的标记。 大麦醇溶蛋白(hordein)是大麦籽粒的主要贮藏蛋白,与大麦的营养品质和加工品质密切相关,而且具有丰富的多态性,广泛用于品种鉴定、种质筛选、遗传多样性和亲缘关系研究。B组醇溶蛋白是主要的醇溶蛋白组份,约占总醇溶蛋白的80%,而且具有丰富的多态性。本研究采用SDS-PAGE分析了72份青藏高原栽培青稞B组醇溶蛋白的遗传多样性。青藏高原栽培青稞B组醇溶蛋白具有丰富的多态性,72份青稞材料中存在15种蛋白带,30种组合带谱,其中15种为单一材料所独有,另15种则分别包含了2-10份材料。每份材料中B组醇溶蛋白条带数为4-8条,含5、6条的材料较常见。不同来源的群体材料间B组醇溶蛋白组成存在差异,西藏青稞含有26种蛋白组合带谱,其中有19种特异带谱;四川群体中共发现11种蛋白组合带型,其中有4种特有带谱。两群体中都存在稀有条带。聚类分析将材料分成三组,材料聚类与材料来源地没有明显的相关性。 淀粉粒蛋白(Starch granule proteins, SGPs)是一类与淀粉粒结合的微量蛋白,一些淀粉粒蛋白具有淀粉生化合成中主要的酶蛋白功能,其变异会影响淀粉含量和特性,从而影响淀粉的应用。关于我国大麦淀粉粒组成研究还未见报道。本实验首次开创了我国大麦淀粉粒结合蛋白的研究工作。采用SDS-PAGE电泳技术研究了青藏高原栽培青稞的SGP组成,并分析了不同SGP组合间淀粉含量的差异,初步探索了所分离的SGP蛋白与淀粉合成的关系。66份青稞材料中分离了10种主要的SGP,其表观分子量为40-100KD,低于60KD的SGP带有7条,共有16种组合带谱;各SGP蛋白和组合带谱出现的频率存在差异,青藏高原青稞的SGP组成存在多态性。西藏青稞和四川青稞的SGP组成有很大差异,SGP组成具有地域差异性,西藏青稞含有12种蛋白组合带谱,其中有9种特异带谱;四川群体中共发现7种蛋白组合带型,其中有4种特有带谱;两群体中仅有3种共同的蛋白组合带谱。SGP蛋白特性将66份青稞分为三组, 即Ⅰ、Ⅱ、Ⅲ,材料聚类与材料来源具有一定的相关性。不同组合带谱材料间淀粉含量差异显著性检验结果显示,不同带谱间材料的总淀粉含量、直链淀粉含量和支链淀粉含量有差异,带谱2(SGP1+3+7+9+10)和8(SGP1+2+4+6+8)的总淀粉含量及支链淀粉含量显著大于组合带谱3(SGP1+3+7+10)的总淀粉含量。组合带谱7(SGP1+2+6+8)的直链淀粉含量显著低于带谱11(SGP1+5+8)的直链淀粉。带谱SGP2、3、4、5、6、7、8、9、10可能参与淀粉合成,SGP9可能与高支链淀粉的合成相关。 SSR标记位点、单体醇溶蛋白、B组醇溶蛋白、淀粉结合蛋白等四个方面的研究结果表明青藏高原SSR标记多态性、单体醇溶蛋白多态性、B组醇溶蛋白多态性和SGP多态性都非常丰富,与青藏高原是栽培青稞的多样性分布中心的观点一致。 青藏高原栽培青稞的SSR标记、单体醇溶蛋白、B组醇溶蛋白和SGP多态性表现出很大差异。SSR标记覆盖了整个基因组,多态性非常高。单体蛋白、B组醇溶蛋白、SGP蛋白是育种中非常关注的性状,他们只是代表基因组中的某一区域或位点,多态性相对较低。但单体蛋白多态性很高,84份材料中检测出43条不同蛋白带,75种不同的组合带谱。SSR标记技术和单体蛋白技术都是遗传多样性研究的有力工具,但单体蛋白技术不仅多态性高,而且经济、操作简便,是种质鉴定的理想方法。 对不同标记的多态性材料数据进行聚类,聚类图能为我们提供各材料间的遗传相似信息,为材料选择提供参考。但材料聚类与材料来源的地理区域的相关性表现不一致。SSR聚类和B组醇溶蛋白聚类与材料的来源地无相关性,而单体醇溶蛋白和SGP聚类与材料来源地有一定相关性,即西藏群体和四川群体分别有集中类群,这可能是人为选择的附加效应。 不同来源的群体材料的遗传多样性不同,具有区域特异稀有基因,加强不同地区间资源的交换和配合使用,有利于增加群体遗传多样性和新品种培育。 青藏高原栽培青稞的麦芽浸提性状、淀粉性状、病虫及裸粒等重要农艺性状控制位点存在丰富的变异,遗传基础宽广,可能蕴藏着多种不同的等位基因,是研究重要性状遗传特性、基因资源挖掘和遗传育种的宝贵资源库。 Hulless barley, due to its favorable attributes such as high feed value, good human nutrition,rich dietary fiber and ease processing, attracts people,s attention . Hulless barley plays a very important role in Tibetan life, used as essential food crop, main animal feed and important fuel. In addition to tsampa (roasted barley flour), a main food for Tibetan, hulless barley is also made into cake, soup, porridge, recent naked barley liquor and cornmeal. Qinghai-Tibet Plateau is one of a few areas which plant naked barley widely in the world and also has a long growing history. Genetic diversity of the cultivated hulless barley in this region , however, has not been documented. The study of genetic diversity existing within this population is of particular interest in germplasm identification, preservation, and new cultivar development. This study analyzed the genetic diversity of the cultivated naked barley from Qinghai-Tibet plateau through the study of SSR marker loci and monomeric prolamins, B-horden and starch granule proteins. SSRs are present abundantly in genomes of higher organisms and have become a popular marker system in plant studies. SSRs offer a number of advantages, such as the high level of polymorphisms, locus specificity, co-dominance, reproducibility, ease of use through PCRand random distribution throughout the genome. In barley, several hundred SSRs have been developed and genetically mapped and can therefore be selected from specific genomic regions. The genetic diversity of 64 cultivated naked barley from Tibet and Sichuan was studied with 30 SSRs of known map location.Among the selected SSR markers, PCR products of 5 SSR markers were not obtained and 3 SSR marker loci were monomeric. A total of 132 alleles were identified at 22 polyomeric SSR loci. The number of alleles per locus ranged from 2 to 15, with an average of 6.0. The polymorphism information content values for the SSRs ranged from 0.08 to 0.94, with an average of 0.65. 13 SSR markers with the PIC value >0.6 have been selected for discrimination of Qinghai-Tibet naked barley genotypews. A finger Print map was developed through 7 SSR markers with the high PIC value. It could be used as an efficient tool for gene discovery and identification of gernplasm. Hordeins, the main storage proteins of the barley seed, are composed of momomeric and polymeric prolamins and divided into -A, B, C and D groups in order of decreasing electrophoretic mobility. Hordeins show high inter-genotypic variation and have been extensively used as markers for cultivar identification and analyzing the genetic diversity. This study analyzed the genetic diversity of B-hordein in 72 naked barley from Qinqhai-Tibet Plateau. Extensive diversity was observed. A total of 15 different bands and 30 distinct patterns were found. Jaccard's coefficient of similarity was calculated, and the accessions were divided into three main groups by cluster analysis using UPGMA. Differentiation among the populations from different collecting regions based on the polymorphism of B-hordein was investigated. Monomeric prolamins show high inter-genotypic variation and have been used as molecular markers for cultivar identification, analyzing the genetic diversity in collections and investigating the evolution processes and structure of populations However, the cultivated hulless accessions from Qinghai-Tibet Pateau in China have never been examined with respect to monomeric prolamins. This study analyzed the genetic diversity of monomeric prolamins (protein fraction corresponding to wheat gliadins) using the Acid -PAGE technique in eighty-four cultivated hulless barley from Qinqhai-Tibet Plateau in China. Extensive diversity was observed. A total of 43 different bands were found, of which 21 different bands were in the region of ω group, 8 in the region of γ, 8 in the region of β, and 6 in the region of α group. Among the 86 accessions, 75 distinct patterns were identified. The number of bands ranged from 6 to 16, depending on the variety. Jaccard’s coefficient of similarity was calculated, and the lines were grouped by cluster analysis using UPGMA. A dendrogram was obtained from the analysis of the groups and five main clusters were identified. No relationship between the distribution in the dendrogram and growth habits and origins of the cultivars could be detected. Starch is the major constituent of the cereal endosperm, comprising approximately 65% of the dry weight of the mature wheat grain. The starch formed in all organs of plants is packaged into starch granules, which vary widely between species and cultivars in size and shape. Wheat endosperm starch granules contain about corresponding to the main biosynthase of starch. This report firstly dealed with intraspecific variation of the major SGPs in cultivated naked barley from Qinghai-Tibet plateau. A total of 10 major SGPs were observed in the range of 40KD-100KD and 16 types of patterns were found. Based on the variation of SGPs, accessions studied were classified into 3 groups. A geographical cline of electrophoregram was observed. In addition, significance test of the difference of starch content among groups and types of patterns were done, and the results indicated those SGPs could be related to the content of starch. Diagram obtained through cluster analysis exhibited a structuration of diversity and genetic relationship among cultivated hulless accessions. In breeding program, parents with genetically distant relationship for hybridization will increase genetic diversity of progenies. In conclusion, cultivated naked barley from Qinghai-Tibet Plateau in China presents a high variability with respect to monomeric prolamins,SSR markers , B- hordeins and SGPs. The result of this study supports Qinghai-Tibet Plateau is the center of cultivated hulless barley and the cultivated naked barley is considered to be a gene pool with large diversity and could be applied to breeding for cereal.
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
The real-space recursion method and unrestricted Hartree-Fock approximation have been applied to calculate the density of states of various Co perovskite, CeCoO3, SrCoO3 and Sr1-xCexCoO3. We have studied the magnetically ordered states of these Co perovskites in an enlarged double cell, and find its various magnetic structures due to the occupancy of 3d band and its interaction with neighboring Co ions. In this study, we have studied the p-d hybridization of the three Co perovskites, we find t(2g) electrons are localized and the flat e(g) band is responsible for the itinerant behavior, and although the rare earth elements itself contribute little to the DOS at the Fermi energy, the DOS at Fermi energy and the magnetic moment changed consequently because of different valence of Co ions in these compounds and p-d hybridization effect is very important. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Laser-induced breakdown spectroscopy (LIBS) as a powerful analytical technique is applied to analyze trace-elements in fresh plant samples. We investigate the LIBS spectra of fresh holly leaves and observe more than 430 lines emitted from 25 elements and molecules in the region 230-438 nm. The influence of laser wavelength on LIBS applied to semi-quantitative analysis of trace-element contents in plant samples is studied. The results show that the UV laser has lower relative standard deviations and better repeatability for semi-quantitative analysis of trace-element contents in plant samples. This work may be helpful for improving the quantitative analysis power of LIBS applied to plant samples.
Resumo:
Plant cell cultures have been suggested as a feasible technology for the production of a myriad of plant-derived metabolites. However, commercial application of plant cell culture has met limited success with only a handful of metabolites produced at the pilot- and commercial-scales. To improve the production of secondary metabolites in plant cell cultures, efforts have been devoted predominantly to the optimization of biosynthetic pathways by both process and genetic engineering approaches. Given that secondary metabolism includes-the synthesis. metabolism and catabolism of endogenous compounds by the specialized proteins, this review intends to draw attention to the manipulation and optimization of post-biosynthetic events that follow the formation of core metabolite structures in biosynthetic pathways. These post-biosynthetic events-the chemical and enzymatic modifications, transport, storage/secretion and catabolism/degradation have been largely unexplored in the past. Potential areas are identified where further research is needed to answer fundamental questions that have implications for advanced bioprocess design. Anthocyanin production by plant cell cultures is used as a case study for this discussion, as it presents a good example of compounds for which there are extensive research publications but still no commercial bioprocess. It is perceived that research on post-biosynthetic processes may lead to future opportunities for significant advances in commercial plant cell cultures. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
National Natural Science Foundation of China [40771205]; National Science Fund for Distinguished Young Scholars [40625002]; Chinese Academy of Sciences [KZCX2-YW-315]
Resumo:
Plant traits and individual plant biomass allocation of 57 perennial herbaceous species, belonging to three common functional groups (forbs, grasses and sedges) at subalpine (3700 m ASL), alpine (4300 m ASL) and subnival (>= 5000 m ASL) sites were examined to test the hypothesis that at high altitudes, plants reduce the proportion of aboveground parts and allocate more biomass to belowground parts, especially storage organs, as altitude increases, so as to geminate and resist environmental stress. However, results indicate that some divergence in biomass allocation exists among organs. With increasing altitude, the mean fractions of total biomass allocated to aboveground parts decreased. The mean fractions of total biomass allocation to storage organs at the subalpine site (7%+/- 2% S.E.) were distinct from those at the alpine (23%+/- 6%) and subnival (21%+/- 6%) sites, while the proportions of green leaves at all altitudes remained almost constant. At 4300 m and 5000 m, the mean fractions of flower stems decreased by 45% and 41%, respectively, while fine roots increased by 86% and 102%, respectively. Specific leaf areas and leaf areas of forbs and grasses deceased with rising elevation, while sedges showed opposite trends. For all three functional groups, leaf area ratio and leaf area root mass ratio decreased, while fine root biomass increased at higher altitudes. Biomass allocation patterns of alpine plants were characterized by a reduction in aboveground reproductive organs and enlargement of fine roots, while the proportion of leaves remained stable. It was beneficial for high altitude plants to compensate carbon gain and nutrient uptake under low temperature and limited nutrients by stabilizing biomass investment to photosynthetic structures and increasing the absorption surface area of fine roots. In contrast to forbs and grasses that had high mycorrhizal infection, sedges had higher single leaf area and more root fraction, especially fine roots.