714 resultados para Planning of teaching
Resumo:
Soil erosion on sloping agricultural land poses a serious problem for the environment, as well as for production. In areas with highly erodible soils, such as those in loess zones, application of soil and water conservation measures is crucial to sustain agricultural yields and to prevent or reduce land degradation. The present study, carried out in Faizabad, Tajikistan, was designed to evaluate the potential of local conservation measures on cropland using a spatial modelling approach to provide decision-making support for the planning of spatially explicit sustainable land use. A sampling design to support comparative analysis between well-conserved units and other field units was established in order to estimate factors that determine water erosion, according to the Revised Universal Soil Loss Equation (RUSLE). Such factor-based approaches allow ready application using a geographic information system (GIS) and facilitate straightforward scenario modelling in areas with limited data resources. The study showed first that assessment of erosion and conservation in an area with inhomogeneous vegetation cover requires the integration of plot-based cover. Plot-based vegetation cover can be effectively derived from high-resolution satellite imagery, providing a useful basis for plot-wise conservation planning. Furthermore, thorough field assessments showed that 25.7% of current total cropland is covered by conservation measures (terracing, agroforestry and perennial herbaceous fodder). Assessment of the effectiveness of these local measures, combined with the RUSLE calculations, revealed that current average soil loss could be reduced through low-cost measures such as contouring (by 11%), fodder plants (by 16%), and drainage ditches (by 53%). More expensive measures such as terracing and agroforestry can reduce erosion by as much as 63% (for agroforestry) and 93% (for agroforestry combined with terracing). Indeed, scenario runs for different levels of tolerable erosion rates showed that more cost-intensive and technologically advanced measures would lead to greater reduction of soil loss. However, given economic conditions in Tajikistan, it seems advisable to support the spread of low-cost and labourextensive measures.
Resumo:
The purpose of the present study was to evaluate the thickness and the anatomic characteristics of the Schneiderian membrane and cortical bone using limited cone beam computed tomography (CBCT) scannning in patients referred for planning of apical surgery of maxillary molars.
Resumo:
Deep brain stimulation (DBS) for Parkinson's disease often alleviates the motor symptoms, but causes cognitive and emotional side effects in a substantial number of cases. Identification of the motor part of the subthalamic nucleus (STN) as part of the presurgical workup could minimize these adverse effects. In this study, we assessed the STN's connectivity to motor, associative, and limbic brain areas, based on structural and functional connectivity analysis of volunteer data. For the structural connectivity, we used streamline counts derived from HARDI fiber tracking. The resulting tracks supported the existence of the so-called "hyperdirect" pathway in humans. Furthermore, we determined the connectivity of each STN voxel with the motor cortical areas. Functional connectivity was calculated based on functional MRI, as the correlation of the signal within a given brain voxel with the signal in the STN. Also, the signal per STN voxel was explained in terms of the correlation with motor or limbic brain seed ROI areas. Both right and left STN ROIs appeared to be structurally and functionally connected to brain areas that are part of the motor, associative, and limbic circuit. Furthermore, this study enabled us to assess the level of segregation of the STN motor part, which is relevant for the planning of STN DBS procedures.
Resumo:
PURPOSE: To compare diagnostic accuracy of multi-station, high-spatial resolution contrast-enhanced MR angiography (CE-MRA) of the lower extremities with digital subtraction angiography (DSA) as the reference standard in patients with symptomatic peripheral arterial occlusive disease. MATERIALS AND METHODS: Of 485 consecutive patients undergoing a run-off CE-MRA, 152 patients (86 male, 66 female; mean age, 71.6 years) with suspected peripheral arterial occlusive disease were included into our Institutional Review Board approved study. All patients underwent MRA and DSA of the lower extremities within 30 days. MRA was performed at 1.5 Tesla with a single bolus of 0.1 mmol/kg body weight of gadobutrol administered at a rate of 2.0 mL/s at three stations. Two readers evaluated the MRA images independently for stenosis grade and image quality. Sensitivity and specificity were derived. RESULTS: Sensitivity and specificity ranged from 73% to 93% and 64% to 89% and were highest in the thigh area. Both readers showed comparable results. Evaluation of good and better quality MRAs resulted in a considerable improvement in diagnostic accuracy. CONCLUSION: Contrast-enhanced MRA demonstrates good sensitivity and specificity in the investigation of the vasculature of the lower extremities. While a minor investigator experience dependence remains, it is standardizable and shows good inter-observer agreement. Our results confirm that the administration of Gadobutrol at a standard dose of 0.1 mmol/kg for contrast-enhanced runoff MRA is able to detect hemodynamically relevant stenoses. Use of contrast-enhanced MRA as an alternative to intra-arterial DSA in the evaluation and therapeutic planning of patients with suspected peripheral arterial occlusive disease is well justified. J. Magn. Reson. Imaging 2013;37:1427-1435. © 2012 Wiley Periodicals, Inc.
Resumo:
This study examined the meaning-making and psychosocial processes of five female legacy students at Bucknell University, each of whom having had at least one parent graduate from the institution. With a research philosophy, design, and methodology rooted in qualitative inquiry and phenomenology, inductive data analysis led to three primary categories that underscored legacy identity development. The first, Paradox of Influence and Identity, revealed through six themes nuanced experiences of separation-individuation. Second, Teaching and Learning, comprised of five themes, illuminated the impact of family — and of Bucknell parent alumni in particular — on their children’s internal working models. Lastly, Bucknell — the Environmental Contextand the five themes grouped therein highlighted the contributions of University community members, and of the campus culture and climate itself, to the co-construction of psychosocial formation. A tentative outline of grounded theory was offered, which explored categorical relationships; Paradox of Influence and Identity emerged as thedominant phenomenon, informing and being reinforced by the data of Teaching and Learning and Bucknell — the Environmental Context. Provisional intervention strategies for student affairs practice, in the contexts of academics, residential life, and career development, were discussed. Further, triangulated research is needed to substantiate and evolve the findings and theoretical model of this thesis.
Resumo:
Misconceptions exist in all fields of learning and develop through a person’s preconception of how the world works. Students with misconceptions in chemical engineering are not capable of correctly transferring knowledge to a new situation and will likely arrive at an incorrect solution. The purpose of this thesis was to repair misconceptions in thermodynamics by using inquiry-based activities. Inquiry-based learning is a method of teaching that involves hands-on learning and self-discovery. Previous work has shown inquiry-based methods result in better conceptual understanding by students relative to traditional lectures. The thermodynamics activities were designed to guide students towards the correct conceptual understanding through observing a preconception fail to hold up through an experiment or simulation. The developed activities focus on the following topics in thermodynamics: “internal energy versus enthalpy”, “equilibrium versus steady state”, and “entropy”. For each topic, two activities were designed to clarify the concept and assure it was properly grasped. Each activity was coupled with an instructions packet containing experimental procedure as well as pre- and post-analysis questions, which were used to analyze the effect of the activities on the students’ responses. Concept inventories were used to monitor students’ conceptual understanding at the beginning and end of the semester. The results did not show a statistically significant increase in the overall concept inventory scores for students who performed the activities compared to traditional learning. There was a statistically significant increase in concept area scores for “internal energy versus enthalpy” and “equilibrium versus steady state”. Although there was not a significant increase in concept inventory scores for “entropy”, written analyses showed most students’ misconceptions were repaired. Students transferred knowledge effectively and retained most of the information in the concept areas of “internal energy versus enthalpy” and “equilibrium versus steady state”.
Resumo:
PURPOSE : For the facilitation of minimally invasive robotically performed direct cochlea access (DCA) procedure, a surgical planning tool which enables the surgeon to define landmarks for patient-to-image registration, identify the necessary anatomical structures and define a safe DCA trajectory using patient image data (typically computed tomography (CT) or cone beam CT) is required. To this end, a dedicated end-to-end software planning system for the planning of DCA procedures that addresses current deficiencies has been developed. METHODS : Efficient and robust anatomical segmentation is achieved through the implementation of semiautomatic algorithms; high-accuracy patient-to-image registration is achieved via an automated model-based fiducial detection algorithm and functionality for the interactive definition of a safe drilling trajectory based on case-specific drill positioning uncertainty calculations was developed. RESULTS : The accuracy and safety of the presented software tool were validated during the conduction of eight DCA procedures performed on cadaver heads. The plan for each ear was completed in less than 20 min, and no damage to vital structures occurred during the procedures. The integrated fiducial detection functionality enabled final positioning accuracies of [Formula: see text] mm. CONCLUSIONS : Results of this study demonstrated that the proposed software system could aid in the safe planning of a DCA tunnel within an acceptable time.
Resumo:
This project was stimulated by the unprecedented speed and scope of changes in Bulgarian higher education since 1989. The rapid growth of the student population and the emergence of a new private sector in higher education led to tightening governmental control and a growing criticism of autonomy and academic freedom. This raised questions about the need for diversification in the field, about the importance of recent innovations in terms of strategic choices for future development and so of how higher education governance could maintain diversity without the system deteriorating. The group first traced the extent of spontaneous processes of innovation at the level of content, of institutions, and the organisation of teaching and learning processes. They then identified the different parties in the struggle for institutionalisation and against diversification, and promising mechanisms for maintaining diversity in higher education. On this basis they outlined a basis for a wide-ranging public discussion of the issue which may serve as a corrective to the mechanisms of state control. Their work included analysis of the legislative framework laid down in the Higher Education Act, which effectively dispenses with the autonomy of universities. They then surveyed the views of both high-level executives in the field and the academics actually involved in the process, as well as of the "consumers" of the educational product, i.e. the students. In considering diversification, they focused on four different types of programmes, including those where diversification is largely limited to content level (e.g. Law), those where it operates mainly on structural levels (e.g. Industrial Management), those where it is often feigned (e.g. Social Work), and those where it is at best formal and sporadic (e.g. Mechanical Engineering). They conclude that the educational system in Bulgaria has considerable internal resources for development. The greatest need is for adequate statutory regulation of academic life which will provide incentives for responsible academic development of higher education institutions and create conditions for the institutionalisation of academic self-organisation and self-control, which will in turn limit the pathological trends in the diversification processes.
Resumo:
1H-MR spectroscopy (MRS) of intramyocellular lipids (IMCL) became particularly important when it was recognized that IMCL levels are related to insulin sensitivity. While this relation is rather complex and depends on the training status of the subjects, various other influences such as exercise and diet also influence IMCL concentrations. This may open insight into many metabolic interactions; however, it also requires careful planning of studies in order to control all these confounding influences. This review summarizes various historical, methodological, and practical aspects of 1H-MR spectroscopy (MRS) of muscular lipids. That includes a differentiation of bulk magnetic susceptibility effects and residual dipolar coupling that can both be observed in MRS of skeletal muscle, yet affecting different metabolites in a specific way. Fitting of the intra- (IMCL) and extramyocellular (EMCL) signals with complex line shapes and the transformation into absolute concentrations is discussed. Since the determination of IMCL in muscle groups with oblique fiber orientation or in obese subjects is still difficult, potential improvement with high-resolution spectroscopic imaging or at higher field strength is considered. Fat selective imaging is presented as a possible alternative to MRS and the potential of multinuclear MRS is discussed. 1H-MRS of muscle lipids allows non-invasive and repeated studies of muscle metabolism that lead to highly relevant findings in clinics and patho-physiology.