999 resultados para Phytoplankton Biomass


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report iron measurements for water column and aerosol samples collected in the Sargasso Sea during July-August 2003 (summer 2003) and April-May 2004 (spring 2004). Our data reveal a large seasonal change in the dissolved iron (dFe) concentration of surface waters in the Bermuda Atlantic Time-series Study region, from ~1-2 nM in summer 2003, when aerosol iron concentrations were high (mean 10 nmol/m**3), to ~0.1-0.2 nM in spring 2004, when aerosol iron concentrations were low (mean 0.64 nmol/m**3). During summer 2003, we observed an increase of ~0.6 nM in surface water dFe concentrations over 13 days, presumably due to eolian iron input; an estimate of total iron deposition over this same period suggests an effective solubility of 3-30% for aerosol iron. Our summer 2003 water column profiles show potentially growth-limiting dFe concentrations (0.02-0.19 nM) coinciding with a deep chlorophyll maximum at 100-150 m depth, where phytoplankton biomass is typically dominated by Prochlorococcus during late summer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During a R.V. Meteor JGOFS-NABE cruise to a tropical site in the northeast Atlantic in spring 1989, three different vertical regimes with respect to nitrate distribution and availability within the euphotic zone were observed. Besides dramatic variations in the depth of the nitracline, a previously undescribed nose-like nitrate maximum within the euphotic zone was the most prominent feature during this study. Both the vertical structure of phytoplankton biomass and the degree of absolute and relative new production were related to the depth of the nitracline, which in turn was dependent on the occurrence/non-occurrence of the subsurface subtropical salinity maximum (Smax). The mesoscale variability of the nitracline depth, as indicated from a pre-survey grid, and published data on the frequent occurrence of the Smax in tropical waters suggest higher variability of new production and F-ratio than usually expected for oligotrophic oceans. The importance of salt fingering and double diffusion for nitrate transport into the euphotic zone is discussed.