921 resultados para Physical model
Resumo:
We show that the extension of the approximate custodial SU(2)(L+R) global symmetry to all the Yukawa interactions of the standard model Lagrangian implies the introduction of sterile right-handed neutrinos and the seesaw mechanism in this sector. In this framework, the observed quark and lepton masses may be interpreted as an effect of physics beyond the standard model. The mechanism used for breaking this symmetry in the Yukawa sector could be different from the one at work in the vector boson sector. We give three model independent examples of these mechanisms.
Resumo:
We report a search for the standard model (SM) Higgs boson based on data collected by the D0 experiment at the Fermilab Tevatron Collider, corresponding to an integrated luminosity of 260 pb(-1). We study events with missing transverse energy and two acoplanar b jets, which provide sensitivity to the ZH production cross section in the nu nu bb channel, and to WH production when the lepton from the W ->center dot nu decay is undetected. The data are consistent with the SM background expectation, and we set 95% C.L. upper limits on sigma(pp -> ZH/WH) x B(H -> bb) from 3.4/8.3 to 2.5/6.3 pb, for Higgs-boson masses between 105 and 135 GeV.
Resumo:
The description of the short-range part of the nucleon-nucleon forces in terms of quark degrees of freedom is tested against experimental observables. We consider, for this purpose, a model where the short-range part of the forces is given by the quark cluster model and the long- and medium-range forces by well established meson exchanges. The investigation is performed using different quark cluster models coming from different sets of quark-quark interactions. The predictions of this model are compared not only with the phase shifts but also directly with the experimental observables. Agreement with the existing pp and np world set of data is poor. This suggests that the current description of the nucleon-nucleon interaction, at short distances, in the framework of the nonrelativistic quark models, is at present only qualitative.
Resumo:
In this work we show that in a version of the 3-3-1 model proposed by Duong and Ma, in which the introduction of a scalar sextet is avoided by adding a singlet heavy charged lepton, the tau lepton gains mass through a seesawlike mechanism. We also show how to generate neutrino masses at the one-loop level, and give the respective Maki-Nakagawa-Sakata mixing matrices for a set of the parameters. We also consider the effect of adding a singlet right-handed neutrino.
Resumo:
We examine the gamma p photoproduction and the hadronic gamma gamma total cross sections by means of a QCD eikonal model with a dynamical infrared mass scale. In this model, where the dynamical gluon mass is the natural regulator for the tree level gluon-gluon scattering, the gamma p and gamma gamma total cross sections are derived from the pp and (p) over barp forward scattering amplitudes assuming vector meson dominance and the additive quark model. We show that the validity of the cross section factorization relation sigma(pp)/sigma(gamma p)=sigma(gamma p)/sigma(gamma gamma) is fulfilled depending on the Monte Carlo model used to unfold the hadronic gamma gamma cross section data, and we discuss in detail the case of sigma(gamma gamma -> hadrons) data with W-gamma gamma> 10 GeV unfolded by the Monte Carlo generators PYTHIA and PHOJET. The data seems to favor a mild dependence with the energy of the probability (P-had) that the photon interacts as a hadron.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Traditional cutoff regularization schemes of the Nambu-Jona-Lasinio model limit the applicability of the model to energy-momentum scales much below the value of the regularizing cutoff. In particular, the model cannot be used to study quark matter with Fermi momenta larger than the cutoff. In the present work, an extension of the model to high temperatures and densities recently proposed by Casalbuoni, Gatto, Nardulli, and Ruggieri is used in connection with an implicit regularization scheme. This is done by making use of scaling relations of the divergent one-loop integrals that relate these integrals at different energy-momentum scales. Fixing the pion decay constant at the chiral symmetry breaking scale in the vacuum, the scaling relations predict a running coupling constant that decreases as the regularization scale increases, implementing in a schematic way the property of asymptotic freedom of quantum chromodynamics. If the regularization scale is allowed to increase with density and temperature, the coupling will decrease with density and temperature, extending in this way the applicability of the model to high densities and temperatures. These results are obtained without specifying an explicit regularization. As an illustration of the formalism, numerical results are obtained for the finite density and finite temperature quark condensate and applied to the problem of color superconductivity at high quark densities and finite temperature.
Resumo:
The abundance and distribution of collapsed objects such as galaxy clusters will become an important tool to investigate the nature of dark energy and dark matter. Number counts of very massive objects are sensitive not only to the equation of state of dark energy, which parametrizes the smooth component of its pressure, but also to the sound speed of dark energy, which determines the amount of pressure in inhomogeneous and collapsed structures. Since the evolution of these structures must be followed well into the nonlinear regime, and a fully relativistic framework for this regime does not exist yet, we compare two approximate schemes: the widely used spherical collapse model and the pseudo-Newtonian approach. We show that both approximation schemes convey identical equations for the density contrast, when the pressure perturbation of dark energy is parametrized in terms of an effective sound speed. We also make a comparison of these approximate approaches to general relativity in the linearized regime, which lends some support to the approximations.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
An exactly solvable quantum field theory (QFT) model of Lee type is constructed to study how neutrino flavor eigenstates are created through interactions and how the localization properties of neutrinos follows from the parent particle that decays. The two-particle states formed by the neutrino and the accompanying charged lepton can be calculated exactly as well as their creation probabilities. We can show that the coherent creation of neutrino flavor eigenstates follows from the common negligible contribution of neutrino masses to their creation probabilities. on the other hand, it is shown that it is not possible to associate a well-defined flavor to coherent superpositions of charged leptons.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)