711 resultados para Petroleum engineering.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present invention describes a method for transforming chemolithotrophic acidophilic bacteria using electroporation technology. The proposed method allows transforming a bacterial line using a transformation vector, the pAF vector, which contains an origin of vegetative replication that allows the vector to replicate inside the bacteria without altering the natural physiological functions of the latter. Also disclosed is the use of the bacteria modified according to the invention in bioleaching processes of sulphated copper, gold, uranium, nickel, zinc and cobalt ore, inter alia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strategies applied to bioremediation contaminated environments are necessary to identify limitations towards biodegradation and to predict remediation performance and thereby rule out technologies that may be inappropriate for the clean-up of the substances of concern. Respirometry applied to bioremediation offers a series of advantages for obtaining CO2 production data when compared to other procedures. It was possible to determinate information regarding the atmosphere's CO2 concentration inside a respirometer containing petroleum products. Afterwards, the CO2 data obtained underwent an in depth statistical analysis by F test. There are some noticeable biodegradation similarity among some substances, such as weathered motor oil and gasoline. Such data provides reliability when revealing important information about how the biodegradation processes happens in those residual oils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stemming from in vitro and in vivo pre-clinical and human models, tissue-engineering-based strategies continue to demonstrate great potential for the regeneration of the pulp-dentin complex, particularly in necrotic, immature permanent teeth. Nanofibrous scaffolds, which closely resemble the native extracellular matrix, have been successfully synthesized by various techniques, including but not limited to electrospinning. A common goal in scaffold synthesis has been the notion of promoting cell guidance through the careful design and use of a collection of biochemical and physical cues capable of governing and stimulating specific events at the cellular and tissue levels. The latest advances in processing technologies allow for the fabrication of scaffolds where selected bioactive molecules can be delivered locally, thus increasing the possibilities for clinical success. Though electrospun scaffolds have not yet been tested in vivo in either human or animal pulpless models in immature permanent teeth, recent studies have highlighted their regenerative potential both from an in vitro and in vivo (i.e., subcutaneous model) standpoint. Possible applications for these bioactive scaffolds continue to evolve, with significant prospects related to the regeneration of both dentin and pulp tissue and, more recently, to root canal disinfection. Nonetheless, no single implantable scaffold can consistently guide the coordinated growth and development of the multiple tissue types involved in the functional regeneration of the pulp-dentin complex. The purpose of this review is to provide a comprehensive perspective on the latest discoveries related to the use of scaffolds and/or stem cells in regenerative endodontics. The authors focused this review on bioactive nanofibrous scaffolds, injectable scaffolds and stem cells, and pre-clinical findings using stem-cell-based strategies. These topics are discussed in detail in an attempt to provide future direction and to shed light on their potential translation to clinical settings.