890 resultados para Personalized medicine
Resumo:
Secure access to patient data is becoming of increasing importance, as medical informatics grows in significance, to both assist with population health studies, and patient specific medicine in support of treatment. However, assembling the many different types of data emanating from the clinic is in itself a difficulty, and doing so across national borders compounds the problem. In this paper we present our solution: an easy to use distributed informatics platform embedding a state of the art data warehouse incorporating a secure pseudonymisation system protecting access to personal healthcare data. Using this system, a whole range of patient derived data, from genomics to imaging to clinical records, can be assembled and linked, and then connected with analytics tools that help us to understand the data. Research performed in this environment will have immediate clinical impact for personalised patient healthcare.
Resumo:
A menudo los científicos secuencian el ADN de un gran número de personas con el objetivo de determinar qué genes se asocian con determinadas enfermedades. Esto permite meóon del genoma humano. El precio de un perfil genómico completo se ha posicionado por debajo de los 200 dólares y este servicio lo ofrecen muchas compañías, la mayor parte localizadas en EEUU. Como consecuencia, en unos pocos a~nos la mayoría de las personas procedentes de los países desarrollados tendrán los medios para tener su ADN secuenciado. Alrededor del 0.5% del ADN de cada persona (que corresponde a varios millones de nucleótidos) es diferente del genoma de referencia debido a variaciones genéticas. Así que el genoma contiene información altamente sensible y personal y representa la identidad biológica óon sobre el entorno o estilo de vida de uno (a menudo facilmente obtenible de las redes sociales), sería posible inferir el fenotipo del individuo. Multiples GWAS (Genome Wide Association Studies) realizados en los últimos a~nos muestran que la susceptibilidad de un paciente a tener una enfermedad en particular, como el Alzheimer, cáncer o esquizofrenia, puede ser predicha parcialmente a partir de conjuntos de sus SNP (Single Nucleotide Polimorphism). Estos resultados pueden ser usados para medicina genómica personalizada (facilitando los tratamientos preventivos y diagnósticos), tests de paternidad genéticos y tests de compatibilidad genética para averiguar a qué enfermedades pueden ser susceptibles los descendientes. Estos son algunos de los beneficios que podemos obtener usando la información genética, pero si esta información no es protegida puede ser usada para investigaciones criminales y por compañías aseguradoras. Este hecho podría llevar a discriminaci ón genética. Por lo que podemos concluir que la privacidad genómica es fundamental por el hecho de que contiene información sobre nuestra herencia étnica, nuestra predisposición a múltiples condiciones físicas y mentales, al igual que otras características fenotópicas, ancestros, hermanos y progenitores, pues los genomas de cualquier par de individuos relacionados son idénticos al 99.9%, contrastando con el 99.5% de dos personas aleatorias. La legislación actual no proporciona suficiente información técnica sobre como almacenar y procesar de forma segura los genomas digitalizados, por lo tanto, es necesaria una legislación mas restrictiva ---ABSTRACT---Scientists typically sequence DNA from large numbers of people in order to determine genes associated with particular diseases. This allows to improve the modern healthcare and to provide a better understanding of the human genome. The price of a complete genome profile has plummeted below $200 and this service is ofered by a number of companies, most of them located in the USA. Therefore, in a few years, most individuals in developed countries will have the means of having their genomes sequenced. Around 0.5% of each person's DNA (which corresponds to several millions of nucleotides) is diferent from the reference genome, owing to genetic variations. Thus, the genome contains highly personal and sensitive information, and it represents our ultimate biological identity. By combining genomic data with information about one's environment or lifestyle (often easily obtainable from social networks), could make it possible to infer the individual's phenotype. Multiple Genome Wide Association Studies (GWAS) performed in recent years have shown that a patient's susceptibility to particular diseases, such as Alzheimer's, cancer, or schizophrenia, can be partially predicted from sets of his SNPs. This results can be used for personalized genomic medicine (facilitating preventive treatment and diagnosis), genetic paternity tests, ancestry and genealogical testing, and genetic compatibility tests in order to have knowledge about which deseases would the descendant be susceptible to. These are some of the betefts we can obtain using genoma information, but if this information is not protected it can be used for criminal investigations and insurance purposes. Such issues could lead to genetic discrimination. So we can conclude that genomic privacy is fundamental due to the fact that genome contains information about our ethnic heritage, predisposition to numerous physical and mental health conditions, as well as other phenotypic traits, and ancestors, siblings, and progeny, since genomes of any two closely related individuals are 99.9% identical, in contrast with 99.5%, for two random people. The current legislation does not ofer suficient technical information about safe and secure ways of storing and processing digitized genomes, therefore, there is need for more restrictive legislation.
Resumo:
En los últimos años ha habido un gran aumento de fuentes de datos biomédicos. La aparición de nuevas técnicas de extracción de datos genómicos y generación de bases de datos que contienen esta información ha creado la necesidad de guardarla para poder acceder a ella y trabajar con los datos que esta contiene. La información contenida en las investigaciones del campo biomédico se guarda en bases de datos. Esto se debe a que las bases de datos permiten almacenar y manejar datos de una manera simple y rápida. Dentro de las bases de datos existen una gran variedad de formatos, como pueden ser bases de datos en Excel, CSV o RDF entre otros. Actualmente, estas investigaciones se basan en el análisis de datos, para a partir de ellos, buscar correlaciones que permitan inferir, por ejemplo, tratamientos nuevos o terapias más efectivas para una determinada enfermedad o dolencia. El volumen de datos que se maneja en ellas es muy grande y dispar, lo que hace que sea necesario el desarrollo de métodos automáticos de integración y homogeneización de los datos heterogéneos. El proyecto europeo p-medicine (FP7-ICT-2009-270089) tiene como objetivo asistir a los investigadores médicos, en este caso de investigaciones relacionadas con el cáncer, proveyéndoles con nuevas herramientas para el manejo de datos y generación de nuevo conocimiento a partir del análisis de los datos gestionados. La ingestión de datos en la plataforma de p-medicine, y el procesamiento de los mismos con los métodos proporcionados, buscan generar nuevos modelos para la toma de decisiones clínicas. Dentro de este proyecto existen diversas herramientas para integración de datos heterogéneos, diseño y gestión de ensayos clínicos, simulación y visualización de tumores y análisis estadístico de datos. Precisamente en el ámbito de la integración de datos heterogéneos surge la necesidad de añadir información externa al sistema proveniente de bases de datos públicas, así como relacionarla con la ya existente mediante técnicas de integración semántica. Para resolver esta necesidad se ha creado una herramienta, llamada Term Searcher, que permite hacer este proceso de una manera semiautomática. En el trabajo aquí expuesto se describe el desarrollo y los algoritmos creados para su correcto funcionamiento. Esta herramienta ofrece nuevas funcionalidades que no existían dentro del proyecto para la adición de nuevos datos provenientes de fuentes públicas y su integración semántica con datos privados.---ABSTRACT---Over the last few years, there has been a huge growth of biomedical data sources. The emergence of new techniques of genomic data generation and data base generation that contain this information, has created the need of storing it in order to access and work with its data. The information employed in the biomedical research field is stored in databases. This is due to the capability of databases to allow storing and managing data in a quick and simple way. Within databases there is a variety of formats, such as Excel, CSV or RDF. Currently, these biomedical investigations are based on data analysis, which lead to the discovery of correlations that allow inferring, for example, new treatments or more effective therapies for a specific disease or ailment. The volume of data handled in them is very large and dissimilar, which leads to the need of developing new methods for automatically integrating and homogenizing the heterogeneous data. The p-medicine (FP7-ICT-2009-270089) European project aims to assist medical researchers, in this case related to cancer research, providing them with new tools for managing and creating new knowledge from the analysis of the managed data. The ingestion of data into the platform and its subsequent processing with the provided tools aims to enable the generation of new models to assist in clinical decision support processes. Inside this project, there exist different tools related to areas such as the integration of heterogeneous data, the design and management of clinical trials, simulation and visualization of tumors and statistical data analysis. Particularly in the field of heterogeneous data integration, there is a need to add external information from public databases, and relate it to the existing ones through semantic integration methods. To solve this need a tool has been created: the term Searcher. This tool aims to make this process in a semiautomatic way. This work describes the development of this tool and the algorithms employed in its operation. This new tool provides new functionalities that did not exist inside the p-medicine project for adding new data from public databases and semantically integrate them with private data.