964 resultados para Peritoneal-macrophages
Resumo:
Intra-organ and intra-vascular pressures can be used to estimate intra-abdominal pressure. The aim of this prospective, interventional study was to assess the effect of PEEP on the accuracy of pressure estimation at different measurement sites in a model of increased abdominal pressure.
Resumo:
The human airway epithelium serves as structural and functional barrier against inhaled particulate antigen. Previously, we demonstrated in an in vitro epithelial barrier model that monocyte derived dendritic cells (MDDC) and monocyte derived macrophages (MDM) take up particulate antigen by building a trans-epithelial interacting network. Although the epithelial tight junction (TJ) belt was penetrated by processes of MDDC and MDM, the integrity of the epithelium was not affected. These results brought up two main questions: (1) Do MDM and MDDC exchange particles? (2) Are those cells expressing TJ proteins, which are believed to interact with the TJ belt of the epithelium to preserve the epithelial integrity? The expression of TJ and adherens junction (AJ) mRNA and proteins in MDM and MDDC monocultures was determined by RT-PCR, and immunofluorescence, respectively. Particle uptake and exchange was quantified by flow cytometry and laser scanning microscopy in co-cultures of MDM and MDDC exposed to polystyrene particles (1 μm in diameter). MDM and MDDC constantly expressed TJ and AJ mRNA and proteins. Flow cytometry analysis of MDM and MDDC co-cultures showed increased particle uptake in MDDC while MDM lost particles over time. Quantitative analysis revealed significantly higher particle uptake by MDDC in co-cultures of epithelial cells with MDM and MDDC present, compared to co-cultures containing only epithelial cells and MDDC. We conclude from these findings that MDM and MDDC express TJ and AJ proteins which could help to preserve the epithelial integrity during particle uptake and exchange across the lung epithelium.
Resumo:
To assess the relationship between endometriotic lesions with associated nerve fibers with both pain and peritoneal fluid (PF) cytokine concentrations based on lesion location.
Resumo:
The eukaryotic cell membrane possesses numerous complex functions, which are essential for life. At this, the composition and the structure of the lipid bilayer are of particular importance. Polyunsaturated fatty acids may modulate the physical properties of biological membranes via alteration of membrane lipid composition affecting numerous physiological processes, e.g. in the immune system. In this systematic study we present fatty acid and peptide profiles of cell membrane and membrane rafts of murine macrophages that have been supplemented with saturated fatty acids as well as PUFAs from the n-3, the n-6 and the n-9 family. Using fatty acid composition analysis and mass spectrometry-based peptidome profiling we found that PUFAs from both the n-3 and the n-6 family have an impact on lipid and protein composition of plasma membrane and membrane rafts in a similar manner. In addition, we found a relation between the number of bis-allyl-methylene positions of the PUFA added and the unsaturation index of plasma membrane as well as membrane rafts of supplemented cells. With regard to the proposed significance of lipid microdomains for disease development and treatment our study will help to achieve a targeted dietary modulation of immune cell lipid bilayers.
Resumo:
Cystic fibrosis (CF), a common lethal inherited disorder defined by ion transport abnormalities, chronic infection, and robust inflammation, is the result of mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a cAMP-activated chloride (Cl-) channel. Macrophages are reported to have impaired activity in CF. Previous studies suggest that Cl- transport is important for macrophage function; therefore, impaired Cl- secretion may underlie CF macrophage dysfunction. To determine whether alterations in Cl- transport exist in CF macrophages, Cl- efflux was measured using N-[ethoxycarbonylmethyl]- 6-methoxy-quinolinium bromide (MQAE), a fluorescent indicator dye. The contribution of CFTR was assessed by calculating Cl- flux in the presence and absence of cftr(inh)-172. The contribution of calcium (Ca(2+))-modulated Cl- pathways was assessed by examining Cl- flux with varied extracellular Ca(2+) concentrations or after treatment with carbachol or thapsigargin, agents that increase intracellular Ca(2+) levels. Our data demonstrate that CFTR contributed to Cl- efflux only in WT macrophages, while Ca(2+)-mediated pathways contributed to Cl- transport in CF and WT macrophages. Furthermore, CF macrophages demonstrated augmented Cl- efflux with increases in extracellular Ca(2+). Taken together, this suggests that Ca(2+)-mediated Cl- pathways are enhanced in CF macrophages compared with WT macrophages.
Resumo:
Although tumor surveillance by T and B lymphocytes is well studied, the role of innate immune cells, in particular macrophages, is less clear. Moreover, the existence of subclonal genetic and functional diversity in some human cancers such as leukemia underscores the importance of defining tumor surveillance mechanisms that effectively target the disease-sustaining cancer stem cells in addition to bulk cells. In this study, we report that leukemia stem cell function in xenotransplant models of acute myeloid leukemia (AML) depends on SIRPα-mediated inhibition of macrophages through engagement with its ligand CD47. We generated mice expressing SIRPα variants with differential ability to bind human CD47 and demonstrated that macrophage-mediated phagocytosis and clearance of AML stem cells depend on absent SIRPα signaling. We obtained independent confirmation of the genetic restriction observed in our mouse models by using SIRPα-Fc fusion protein to disrupt SIRPα-CD47 engagement. Treatment with SIRPα-Fc enhanced phagocytosis of AML cells by both mouse and human macrophages and impaired leukemic engraftment in mice. Importantly, SIRPα-Fc treatment did not significantly enhance phagocytosis of normal hematopoietic targets. These findings support the development of therapeutics that antagonize SIRPα signaling to enhance macrophage-mediated elimination of AML.
Resumo:
Intraperitoneal proliferation of the metacestode stage of Echinococcus multilocularis in experimentally infected mice is followed by an impaired host immune response favoring parasite survival. We here demonstrate that infection in chronically infected mice was associated with a 3-fold increase of the percentages of CD4+ and CD8+ peritoneal T (pT) cells compared to uninfected controls. pT cells of infected mice expressed high levels of IL-4 mRNA, while only low amounts of IFN-gamma mRNA were detected, suggesting that a Th2-biased immune response predominated the late stage of disease. Peritoneal dendritic cells from infected mice (AE-pDCs) expressed high levels of TGF-beta mRNA and very low levels of IL-10 and IL-12 (p40) mRNA, and the expression of surface markers for DC-maturation such as MHC class II (Ia) molecules, CD80, CD86 and CD40 was down-regulated. In contrast to pDCs from non-infected mice, AE-pDCs did not enhance Concanavalin A (ConA)-induced proliferation when added to CD4+ pT and CD8+ pT cells of infected and non-infected mice, respectively. In addition, in the presence of a constant number of pDCs from non-infected mice, the proliferation of CD4+ pT cells obtained from infected animals to stimulation with ConA was lower when compared to the responses of CD4+ pT cells obtained from non-infected mice. This indicated that regulatory T cells (Treg) may interfere in the complex immunological host response to infection. Indeed, a subpopulation of regulatory CD4+ CD25+ pT cells isolated from E. multilocularis-infected mice reduced ConA-driven proliferation of CD4+ pT cells. The high expression levels of Foxp3 mRNA by CD4+ and CD8+ pT cells suggested that subpopulations of regulatory CD4+ Foxp3+ and CD8+ Foxp3+ T cells were involved in modulating the immune responses within the peritoneal cavity of E. multilocularis-infected mice.
Resumo:
Autophagy is a conserved proteolytic mechanism that degrades cytoplasmic material including cell organelles. Accumulating evidence exists that autophagy also plays a major role in immunity and inflammation. Specifically, it appears that autophagy protects against infections and inflammation. Here, we review recent work performed in macrophages and neutrophils, which both represent critical phagocytes in mammalians.
Resumo:
The aim of this study was to evaluate serum and peritoneal fluid (PF) glycodelin-A concentrations in women with ovarian endometriosis. Ninety-nine matched pairs of serum and PF samples were included in our study. The case group comprised 57 women with ovarian endometriosis and the control group 42 healthy women undergoing sterilization or patients with benign ovarian cysts. Glycodelin-A concentrations were measured using ELISA. Endometriosis patients had significantly higher serum and PF glycodelin-A concentrations compared to controls, and this increase was observed in both proliferative and secretory cycle phases. Glycodelin-A concentrations were more than 10-fold higher in PF than in serum and correlated with each other. Intensity and frequency of menstrual pain positively correlated with glycodelin-A concentrations. Sensitivity and specificity of glycodelin-A as a biomarker for ovarian endometriosis were 82.1% and 78.4% in serum, and 79.7% and 77.5% in PF, respectively. These results indicate that Glycodelin-A has a potential role as a biomarker to be used in combination with other, independent marker molecules.
Resumo:
Endometriosis is a painful disease affecting 10-15% of reproductive-age women. Concentrations of several cytokines and angiogenic factors in peritoneal fluid (PF) have been found to correlate with the severity of the disease. However, levels of some analytes vary across the menstrual cycle, and an ideal biomarker of endometriosis has not yet been identified. We have compared the PF concentrations of different cytokines in proliferative and secretory phases in women with and without the disease using the Bio-Plex platform.
Resumo:
Toll-like receptors are of key importance in the recognition of and response to infectious agents by cells of the innate immune system. TLR mRNA expression and TLR-mediated functions were determined in bovine macrophages (MPhi) infected with bovine viral diarrhea virus (BVDV) or stimulated with interferon-gamma (IFN-gamma) in order to see whether they are correlated under these conditions. As parameters quantitative real time RT-PCR (QRT-PCR) for TLR2, TLR3 and TLR4, NO and TNF production were measured. Triggering of bovine MPhi with bona fide TLR2 and TLR4 agonists (lipopolysaccharide, lipoteichoic acid, peptidoglycan, lipopetide) led to NO and TNF production but neither TLR3 nor TLR9 agonists (double-stranded RNA, CpG DNA) showed this effect. The mRNA expression of TLR2, TLR3 and TLR4 was neither influenced by MPhi costimulation with IFN-gamma nor by MPhi preinfection with BVDV nor by the ligands themselves. However, NO production induced by TLR2 or TLR4 agonists was strongly modulated either by IFN-gamma costimulation or BVDV preinfection. Thus costimulation of MPhi with IFN-gamma resulted in an increase of both NO synthesis and TNF expression by cells stimulated simultaneously by TLR2 or TLR4 agonists. Preinfection of bovine MPhi by BVDV resulted in upregulation of TLR2- and TLR4-mediated NO synthesis. Collectively, these data show that TLR-mediated functions may be modulated by viral infection or activation via IFN-gamma of MPhi whereas the mRNA concentrations of relevant TLR members were not significantly influenced. Thus, the amount of TLR2, TLR3 and TLR4 mRNA transcripts is stable at least under the conditions tested. More importantly, modulation of TLR-mediated responses was dissociated from mRNA expression of TLR members.
Resumo:
Larval infection with Echinococcus multilocularis starts with the intrahepatic postoncospheral development of a metacestode that-at its mature stage-consists of an inner germinal and an outer laminated layer (GL ; LL). In certain cases, an appropriate host immune response may inhibit parasite proliferation. Several lines of evidence obtained in vivo and in vitro indicate the important bio-protective role of the LL. For instance, the LL has been proposed to protect the GL from nitric oxide produced by periparasitic macrophages and dendritic cells, and also to prevent immune recognition by surrounding T cells. On the other hand, the high periparasitic NO production by peritoneal exsudate cells contributes to periparasitic immunosuppression, explaining why iNOS deficienct mice exhibit a significantly lower susceptibility towards experimental infection. The intense periparasitic granulomatous infiltration indicates a strong host-parasite interaction, and the involvement of cellular immunity in control of the metacestode growth kinetics is strongly suggested by experiments carried out in T cell deficient mouse strains. Carbohydrate components of the LL, such as Em2(G11) and Em492, as well as other parasite metabolites yield immunomodulatory effects that allow the parasite to survive in the host. I.e., the IgG response to the Em2(G11)-antigen takes place independently of alpha-beta+CD4+T cells, and in the absence of interactions between CD40 and CD40 ligand. Such parasite molecules also interfere with antigen presentation and cell activation, leading to a mixed Th1/Th2-type response at the later stage of infection. Furthermore, Em492 and other (not yet published) purified parasite metabolites suppress ConA and antigen-stimulated splenocyte proliferation. Infected mouse macrophages (AE-MØ) as antigen presenting cells (APC) exhibited a reduced ability to present a conventional antigen (chicken ovalbumin, C-Ova) to specific responder lymph node T cells when compared to normal MØ. As AE-MØ fully maintain their capacity to appropriately process antigens, a failure in T cell receptor occupancy by antigen-Ia complex or/and altered co-stimulatory signals can be excluded. Studying the status of accessory molecules implicated in T cell stimulation by MØ, it could be shown that B7-1 (CD80) and B7-2 (CD86) remained unchanged, whereas CD40 was down-regulated and CD54 (=ICAM-1) slightly up-regulated. FACS analysis of peritoneal cells revealed a decrease in the percentage of CD4+ and CD8+T cells in AE-infected mice. Taken together the obstructed presenting-activity of AE-MØ appeared to trigger an unresponsiveness of T cells leading to the suppression of their clonal expansion during the chronic phase of AE infection. Interesting information on the parasite survival strategy and potential can be obtained upon in vitro and in vivo treatment. Hence, we provided very innovative results by showing that nitazoxanide, and now also, respectively, new modified compounds may represent a useful alternative to albendazole. In the context of chemotherapeutical repression of parasite growth, we searched also for parasite molecules, whose expression levels correlate with the viability and growth activity of E. multilocularis metacestode. Expression levels of 14-3-3 and II/3-10, relatively quantified by realtime reverse transcription-PCR using a housekeeping gene beta-actin, were studied in permissive nu/nu and in low-permissive wild type BALB/c mice. At 2 months p.i., the transcription level of 14-3-3 was significantly higher in parasites actively proliferating in nu/nu mice compared to parasites moderately growing in wild type mice. Immunoblotting experiments confirmed at the protein level that 14-3-3 was over-expressed in parasites derived from nu/nu mice at 2 months p.i. In vitro-treatment of E. multilocularis with an anti-echinococcal drug nitazoxanide for a period of 8 days resulted in a significant decrease of both 14-3-3 and II/3-10 transcription levels,