920 resultados para Perceptual closure
Resumo:
The quality and bitrate modeling is essential to effectively adapt the bitrate and quality of videos when delivered to multiplatform devices over resource constraint heterogeneous networks. The recent model proposed by Wang et al. estimates the bitrate and quality of videos in terms of the frame rate and quantization parameter. However, to build an effective video adaptation framework, it is crucial to incorporate the spatial resolution in the analytical model for bitrate and perceptual quality adaptation. Hence, this paper proposes an analytical model to estimate the bitrate of videos in terms of quantization parameter, frame rate, and spatial resolution. The model can fit the measured data accurately which is evident from the high Pearson correlation. The proposed model is based on the observation that the relative reduction in bitrate due to decreasing spatial resolution is independent of the quantization parameter and frame rate. This modeling can be used for rate-constrained bit-stream adaptation scheme which selects the scalability parameters to optimize the perceptual quality for a given bandwidth constraint.
Resumo:
A pressing concern within the literature on anticipatory perceptual-motor behaviour is the lack of clarity on the applicability of data, observed under video-simulation task constraints, to actual performance in which actions are coupled to perception, as captured during in-situ experimental conditions. We developed an in-situ experimental paradigm which manipulated the duration of anticipatory visual information from a penalty taker’s actions to examine experienced goalkeepers’ vulnerability to deception for the penalty kick in association football. Irrespective of the penalty taker’s kick strategy, goalkeepers initiated movement responses earlier across consecutively earlier presentation points. Overall goalkeeping performance was better in non-deception trials than in deception conditions. In deception trials, the kinematic information presented up until the penalty taker initiated his/her kicking action had a negative effect on goalkeepers’ performance. It is concluded that goalkeepers are likely to benefit from not anticipating a penalty taker’s performance outcome based on information from the run-up, in preference to later information that emerges just before the initiation of the penalty taker’s kicking action.
Resumo:
Objective: To investigate how age-related declines in vision (particularly contrast sensitivity), simulated using cataract-goggles and low-contrast stimuli, influence the accuracy and speed of cognitive test performance in older adults. An additional aim was to investigate whether declines in vision differentially affect secondary more than primary memory. Method: Using a fully within-subjects design, 50 older drivers aged 66-87 years completed two tests of cognitive performance - letter matching (perceptual speed) and symbol recall (short-term memory) - under different viewing conditions that degraded visual input (low-contrast stimuli, cataract-goggles, and low-contrast stimuli combined with cataract-goggles, compared with normal viewing). However, presentation time was also manipulated for letter matching. Visual function, as measured using standard charts, was taken into account in statistical analyses. Results: Accuracy and speed for cognitive tasks were significantly impaired when visual input was degraded. Furthermore, cognitive performance was positively associated with contrast sensitivity. Presentation time did not influence cognitive performance, and visual gradation did not differentially influence primary and secondary memory. Conclusion: Age-related declines in visual function can impact on the accuracy and speed of cognitive performance, and therefore the cognitive abilities of older adults may be underestimated in neuropsychological testing. It is thus critical that visual function be assessed prior to testing, and that stimuli be adapted to older adults' sensory capabilities (e.g., by maximising stimuli contrast).
Resumo:
Currently the final year curriculum in most, if not all, Australian law schools is delivered in a disjointed way which is not engaging final year students in a genuine capstone experience that supports the development of their professional identity and their transition out of university. The possible benefits of a capstone experience include preparing law students for the practice of law by assisting them to synthesise and extend their knowledge and skills, develop a professional identity that incorporates moral, ethical and social values, and become skilled problem solvers and life-long learners who can meet the rigours of the dynamic, competitive, and challenging world of twenty-first century legal practice. In 2009 the ALTC funded the “Curriculum renewal in legal education” project which seeks to achieve curriculum renewal for legal education through the articulation of a set of curriculum design principles for the final year and the design of a transferable model for an effective final year program. The three cornerstone capstone curriculum objectives identified by the project are closure of the tertiary experience, reflection on that experience, and transitioning from university student to legal professional. These cornerstone curriculum objectives will inform the development of the final year principles and model program. This paper will report on the progress that has been made on the project including a meeting of the project reference group held in February 2010 and the draft curriculum design principles.
Resumo:
In recent years there has been widespread interest in patterns, perhaps provoked by a realisation that they constitute a fundamental brain activity and underpin many artificial intelligence systems. Theorised concepts of spatial patterns including scale, proportion, and symmetry, as well as social and psychological understandings are being revived through digital/parametric means of visualisation and production. The effect of pattern as an ornamental device has also changed from applied styling to mediated dynamic effect. The interior has also seen patterned motifs applied to wall coverings, linen, furniture and artefacts with the effect of enhancing aesthetic appreciation, or in some cases causing psychological and/or perceptual distress (Rodemann 1999). ----- ----- While much of this work concerns a repeating array of surface treatment, Philip Ball’s The Self- Made Tapestry: Pattern Formation in Nature (1999) suggests a number of ways that patterns are present at the macro and micro level, both in their formation and disposition. Unlike the conventional notion of a pattern being the regular repetition of a motif (geometrical or pictorial) he suggests that in nature they are not necessarily restricted to a repeating array of identical units, but also include those that are similar rather than identical (Ball 1999, 9). From his observations Ball argues that they need not necessarily all be the same size, but do share similar features that we recognise as typical. Examples include self-organized patterns on a grand scale such as sand dunes, or fractal networks caused by rivers on hills and mountains, through to patterns of flow observed in both scientific experiments and the drawings of Leonardo da Vinci.
Resumo:
Previous research has suggested that perceptual-motor difficulties may account for obese children's lower motor competence; however, specific evidence is currently lacking. Therefore, this study examined the effect of altered visual conditions on spatiotemporal and kinematic gait parameters in obese versus normal-weight children. Thirty-two obese and normal-weight children (11.2 ± 1.5 years) walked barefoot on an instrumented walkway at constant self-selected speed during LIGHT and DARK conditions. Three-dimensional motion analysis was performed to calculate spatiotemporal parameters, as well as sagittal trunk segment and lower extremity joint angles at heel-strike and toe-off. Self-selected speed did not significantly differ between groups. In the DARK condition, all participants walked at a significantly slower speed, decreased stride length, and increased stride width. Without normal vision, obese children had a more pronounced increase in relative double support time compared to the normal-weight group, resulting in a significantly greater percentage of the gait cycle spent in stance. Walking in the DARK, both groups showed greater forward tilt of the trunk and restricted hip movement. All participants had increased knee flexion at heel-strike, as well as decreased knee extension and ankle plantarflexion at toe-off in the DARK condition. The removal of normal vision affected obese children's temporal gait pattern to a larger extent than that of normal-weight peers. Results suggest an increased dependency on vision in obese children to control locomotion. Next to the mechanical problem of moving excess mass, a different coupling between perception and action appears to be governing obese children's motor coordination and control.
Resumo:
This paper describes a novel probabilistic approach to incorporating odometric information into appearance-based SLAM systems, without performing metric map construction or calculating relative feature geometry. The proposed system, dubbed Continuous Appearance-based Trajectory SLAM (CAT-SLAM), represents location as a probability distribution along a trajectory, and represents appearance continuously over the trajectory rather than at discrete locations. The distribution is evaluated using a Rao-Blackwellised particle filter, which weights particles based on local appearance and odometric similarity and explicitly models both the likelihood of revisiting previous locations and visiting new locations. A modified resampling scheme counters particle deprivation and allows loop closure updates to be performed in constant time regardless of map size. We compare the performance of CAT-SLAM to FAB-MAP (an appearance-only SLAM algorithm) in an outdoor environment, demonstrating a threefold increase in the number of correct loop closures detected by CAT-SLAM.
Resumo:
Automobiles have deeply impacted the way in which we travel but they have also contributed to many deaths and injury due to crashes. A number of reasons for these crashes have been pointed out by researchers. Inexperience has been identified as a contributing factor to road crashes. Driver’s driving abilities also play a vital role in judging the road environment and reacting in-time to avoid any possible collision. Therefore driver’s perceptual and motor skills remain the key factors impacting on road safety. Our failure to understand what is really important for learners, in terms of competent driving, is one of the many challenges for building better training programs. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. A multidisciplinary approach is necessary to explain how driving abilities evolves with on-road driving experience. To our knowledge, driver assistance systems have never been comprehensively used in a driver training context to assess the safety aspect of driving. The aim and novelty of this thesis is to develop and evaluate an Intelligent Driver Training System (IDTS) as an automated assessment tool that will help drivers and their trainers to comprehensively view complex driving manoeuvres and potentially provide effective feedback by post processing the data recorded during driving. This system is designed to help driver trainers to accurately evaluate driver performance and has the potential to provide valuable feedback to the drivers. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the driving tasks. Therefore, the proposed IDTS utilizes fuzzy set theory for the assessment of driver performance. The proposed research program focuses on integrating the multi-sensory information acquired from the vehicle, driver and environment to assess driving competencies. After information acquisition, the current research focuses on automated segmentation of the selected manoeuvres from the driving scenario. This leads to the creation of a model that determines a “competency” criterion through the driving performance protocol used by driver trainers (i.e. expert knowledge) to assess drivers. This is achieved by comprehensively evaluating and assessing the data stream acquired from multiple in-vehicle sensors using fuzzy rules and classifying the driving manoeuvres (i.e. overtake, lane change, T-crossing and turn) between low and high competency. The fuzzy rules use parameters such as following distance, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvres to assess competency. These rules that identify driving competency were initially designed with the help of expert’s knowledge (i.e. driver trainers). In-order to fine tune these rules and the parameters that define these rules, a driving experiment was conducted to identify the empirical differences between novice and experienced drivers. The results from the driving experiment indicated that significant differences existed between novice and experienced driver, in terms of their gaze pattern and duration, speed, stop time at the T-crossing, lane keeping and the time spent in lanes while performing the selected manoeuvres. These differences were used to refine the fuzzy membership functions and rules that govern the assessments of the driving tasks. Next, this research focused on providing an integrated visual assessment interface to both driver trainers and their trainees. By providing a rich set of interactive graphical interfaces, displaying information about the driving tasks, Intelligent Driver Training System (IDTS) visualisation module has the potential to give empirical feedback to its users. Lastly, the validation of the IDTS system’s assessment was conducted by comparing IDTS objective assessments, for the driving experiment, with the subjective assessments of the driver trainers for particular manoeuvres. Results show that not only IDTS was able to match the subjective assessments made by driver trainers during the driving experiment but also identified some additional driving manoeuvres performed in low competency that were not identified by the driver trainers due to increased mental workload of trainers when assessing multiple variables that constitute driving. The validation of IDTS emphasized the need for an automated assessment tool that can segment the manoeuvres from the driving scenario, further investigate the variables within that manoeuvre to determine the manoeuvre’s competency and provide integrated visualisation regarding the manoeuvre to its users (i.e. trainers and trainees). Through analysis and validation it was shown that IDTS is a useful assistance tool for driver trainers to empirically assess and potentially provide feedback regarding the manoeuvres undertaken by the drivers.
Resumo:
Recent perceptual-motor studies have revealed variations in learning trajectories of novices. Despite such observation, relatively little attention has been paid to studying individual differences in experienced performers’ perceptual-motor behaviors. The present study examined individual differences for a visual anticipation task. Experienced association football goalkeepers attempted to intercept penalty kicks taken with deceptive and non-deceptive kicking actions. Data revealed that differences in the action capabilities of goalkeepers affected the timing and accuracy of movement response behaviors. Faster goalkeepers tended to wait until later before initiating movement in comparison with slower goalkeepers. The study of affordances in sport environments offers a theoretical framework with which to overcome some of the reported methodological limitations in the visual anticipation literature.
Resumo:
Gaze and movement behaviors of association football goalkeepers were compared under two video simulation conditions (i.e., verbal and joystick movement responses) and three in situ conditions (i.e., verbal, simplified body movement, and interceptive response). The results showed that the goalkeepers spent more time fixating on information from the penalty kick taker’s movements than ball location for all perceptual judgment conditions involving limited movement (i.e., verbal responses, joystick movement, and simplified body movement). In contrast, an equivalent amount of time was spent fixating on the penalty taker’s relative motions and the ball location for the in situ interception condition, which required the goalkeepers to attempt to make penalty saves. The data suggest that gaze and movement behaviors function differently, depending on the experimental task constraints selected for empirical investigations. These findings highlight the need for research on perceptual— motor behaviors to be conducted in representative experimental conditions to allow appropriate generalization of conclusions to performance environments.
Resumo:
The aim of this project was to implement a just-in-time hints help system into a real time strategy (RTS) computer game that would deliver information to the user at the time that it would be of the most benefit. The goal of this help system is to improve the user’s learning in terms of their rate of learning, retention and avoidance of stagnation. The first stage of this project was implementing a computer game to incorporate four different types of skill that the user must acquire, namely motor, perceptual, declarative knowledge and strategic. Subsequently, the just-in-time hints help system was incorporated into the game to assess the user’s knowledge and deliver hints accordingly. The final stage of the project was to test the effectiveness of this help system by conducting two phases of testing. The goal of this testing was to demonstrate an increase in the user’s assessment of the helpfulness of the system from phase one to phase two. The results of this testing showed that there was no significant difference in the user’s responses in the two phases. However, when the results were analysed with respect to several categories of hints that were identified, it became apparent that patterns in the data were beginning to emerge. The conclusions of the project were that further testing with a larger sample size would be required to provide more reliable results and that factors such as the user’s skill level and different types of goals should be taken into account.
Resumo:
In this work a novel hybrid approach is presented that uses a combination of both time domain and frequency domain solution strategies to predict the power distribution within a lossy medium loaded within a waveguide. The problem of determining the electromagnetic fields evolving within the waveguide and the lossy medium is decoupled into two components, one for computing the fields in the waveguide including a coarse representation of the medium (the exterior problem) and one for a detailed resolution of the lossy medium (the interior problem). A previously documented cell-centred Maxwell’s equations numerical solver can be used to resolve the exterior problem accurately in the time domain. Thereafter the discrete Fourier transform can be applied to the computed field data around the interface of the medium to estimate the frequency domain boundary condition in-formation that is needed for closure of the interior problem. Since only the electric fields are required to compute the power distribution generated within the lossy medium, the interior problem can be resolved efficiently using the Helmholtz equation. A consistent cell-centred finite-volume method is then used to discretise this equation on a fine mesh and the underlying large, sparse, complex matrix system is solved for the required electric field using the iterative Krylov subspace based GMRES iterative solver. It will be shown that the hybrid solution methodology works well when a single frequency is considered in the evaluation of the Helmholtz equation in a single mode waveguide. A restriction of the scheme is that the material needs to be sufficiently lossy, so that any penetrating waves in the material are absorbed.
Resumo:
An increasing number of studies are highlighting the alarming proportion of motorists that drive after having consumed illicit drugs. However presently, little attention has focused on the factors that may facilitate drug driving from a criminogenic paradigm. This study evaluated the contribution of deterrence, defiance, and deviance theories on intentions to drug drive to determine factors that might facilitate or reduce this behaviour. A total of 922 individuals completed a questionnaire that assessed frequency of drug use and a variety of perceptions on deterrence, defiance, and deviance constructs. The analysis showed that the defiance constructs (i.e., experiencing feelings of shame and believing in the legitimacy of sanctioning authority) and the deviance constructs (i.e., moral attachment to the norm and having a criminal conviction) were predictive of drug driving intentions. The facets of deterrence theory were not found to be significant predictors. Ultimately, this study illustrates that a range of behavioural and perceptual factors have the capacity to influence decisions to drug drive. As a result, there appears the need to extend the focus of research endeavours beyond legal sanctions to examine other factors that may be utilised to both understand the aetiology of drug driving as well as increase the possibility of compliance with the corresponding legislation.
Resumo:
Introduction: Why we need to base childrens’ sport and physical education on the principles of dynamical systems theory and ecological psychology As the childhood years are crucial for developing many physical skills as well as establishing the groundwork leading to lifelong participation in sport and physical activities, (Orlick & Botterill, 1977, p. 11) it is essential to examine current practice to make sure it is meeting the needs of children. In recent papers (e.g. Renshaw, Davids, Chow & Shuttleworth, in press; Renshaw, Davids, Chow & Hammond, in review; Chow et al., 2009) we have highlighted that a guiding theoretical framework is needed to provide a principled approach to teaching and coaching and that the approach must be evidence- based and focused on mechanism and not just on operational issues such as practice, competition and programme management (Lyle, 2002). There is a need to demonstrate how nonlinear pedagogy underpins teaching and coaching practice for children given that some of the current approaches underpinning children’s sport and P.E. may not be leading to optimal results. For example, little time is spent undertaking physical activities (Tinning, 2006) and much of this practice is not representative of the competition demands of the performance environment (Kirk & McPhail, 2002; Renshaw et al., 2008). Proponents of a non- linear pedagogy advocate the design of practice by applying key concepts such as the mutuality of the performer and environment, the tight coupling of perception and action, and the emergence of movement solutions due to self organisation under constraints (see Renshaw, et al., in press). As skills are shaped by the unique interacting individual, task and environmental constraints in these learning environments, small changes to individual structural (e.g. factors such as height or limb length) or functional constraints (e.g. factors such as motivation, perceptual skills, strength that can be acquired), task rules, equipment, or environmental constraints can lead to dramatic changes in movement patterns adopted by learners to solve performance problems. The aim of this chapter is to provide real life examples for teachers and coaches who wish to adopt the ideas of non- linear pedagogy in their practice. Specifically, I will provide examples related to specific issues related to individual constraints in children and in particular the unique challenges facing coaches when individual constraints are changing due to growth and development. Part two focuses on understanding how cultural environmental constraints impact on children’s sport. This is an area that has received very little attention but plays a very important part in the long- term development of sporting expertise. Finally, I will look at how coaches can manipulate task constraints to create effective learning environments for young children.
Resumo:
In team sports such as rugby union, a myriad of decisions and actions occur within the boundaries that compose the performance perceptual- motor workspace. The way that these performance boundaries constrain decision making and action has recently interested researchers and has involved developing an understanding of the concept of constraints. Considering team sports as complex dynamical systems, signifies that they are composed of multiple, independent agents (i.e. individual players) whose interactions are highly integrated. This level of complexity is characterized by the multiple ways that players in a rugby field can interact. It affords the emergence of rich patterns of behaviour, such as rucks, mauls, and collective tactical actions that emerge due to players’ adjustments to dynamically varying competition environments. During performance, the decisions and actions of each player are constrained by multiple causes (e.g. technical and tactical skills, emotional states, plans, thoughts, etc.) that generate multiple effects (e.g. to run or pass, to move forward to tackle or maintain position and drive the opponent to the line), a prime feature in a complex systems approach to team games performance (Bar- Yam, 2004). To establish a bridge between the complexity sciences and learning design in team sports like rugby union, the aim of practice sessions is to prepare players to pick up and explore the information available in the multiple constraints (i.e. the causes) that influence performance. Therefore, learning design in training sessions should be soundly based on the interactions amongst players (i.e.teammates and opponents) that will occur in rugby matches. To improve individual and collective decision making in rugby union, Passos and colleagues proposed in previous work a performer- environment interaction- based approach rather than a traditional performer- based approach (Passos, Araújo, Davids & Shuttleworth, 2008).