915 resultados para Pattern recognition algorithms


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cardiovascular disease is a complex disorder involving multiple pathophysiological processes, several of which involve activation of toll-like receptors (TLRs) of the innate immune system. As sentinels of innate immunity TLRs are nonclonally germline-encoded molecular pattern recognition receptors that recognize exogenous as well as tissue-derived molecular dangers signals promoting inflammation. In addition to their expression in immune cells, TLRs are found in other tissues and cell types including cardiomyocytes, endothelial and vascular smooth muscle cells. TLRs are differentially regulated in various cell types by several cardiovascular risk factors such as hypercholesterolemia, hyperlipidemia, and hyperglycemia and may represent a key mechanism linking chronic inflammation, cardiovascular disease progression, and activation of the immune system. Modulation of TLR signaling by specific TLR agonists or antagonists, alone or in combination, may be a useful therapeutic approach to treat various cardiovascular inflammatory conditions such as atherosclerosis, peripheral arterial disease, secondary microvascular complications of diabetes, autoimmune disease, and ischemia reperfusion injury. In this paper we discuss recent developments and current evidence for the role of TLR in cardiovascular disease as well as the therapeutic potential of various compounds on inhibition of TLR-mediated inflammatory responses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mannan-binding lectin (MBL) and ficolins are microbial pattern recognition molecules that activate the lectin pathway of complement. We previously reported the association of MBL deficiency with anti-Saccharomyces cerevisiae antibodies (ASCA) in patients with Crohn's disease (CD). However, ASCA are also frequently found in MBL-proficient CD patients. Here we addressed expression/function of ficolins and MBL-associated serine protease-2 (MASP-2) regarding potential association with ASCA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

THP-1 2A9, a subclone of the monocytoid cell line THP-1 and known to be exquisitely sensitive to LPS, was tested for TNF production following triggering by excess doses of TLR ligands. TLR2, TLR4 and TLR5 agonists, but neither TLR3 nor TLR9 agonists, induced TNF production. When used at lower concentrations, priming by calcitriol strongly influenced the sensitivity of cells to LPS and different TLR2 triggers (lipoteichoic acid (LTA), trispalmitoyl-cysteyl-seryl-lysyl-lysyl-lysyl-lysine (Pam3Cys) and peptidoglycan (PGN)). Priming by calcitriol failed to modulate TLR2 and TLR4 mRNA and cell surface expression of these receptors. TNF signals elicited by TLR2 agonists were blocked by the TLR-specific antibody 2392. CD14-specific antibodies showed variable effects. CD14-specific antibodies inhibited TNF induction by LTA. High concentrations partially inhibited TNF induction by Pam3Cys. The same antibodies failed to inhibit TNF induction by PGN. Thus, THP-1 2A9 cells respond by TNF production to some, but not all TLR agonists, and the wide variety of putative TLR2 agonists interact to variable degrees also with other cell-surface-expressed binding sites such as CD14. THP-1 2A9 cells might provide a model by which to investigate in more detail the interaction of pathogen-associated molecular patterns and monocytoid cell-surface-expressed pattern recognition receptors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interaction of bovine cells with lipopolysaccharide (LPS) was explored using human embryo kidney (HEK) 293 cell line stably transduced with bovine toll-like receptor-4 (TLR4) alone or in combination with bovine MD-2. These lines and mock-transduced HEK293 cells were tested by flow cytometry for LPS-fluorescein isothiocyanate (LPS-FITC) binding, nuclear factor kappa B (NFkappaB) activation, interleukin-8 (IL-8) production and interferon-beta mRNA expression/interferon (IFN) type I production. Whereas bovine TLR4 was sufficient to promote binding of high concentrations of LPS-FITC, both bovine TLR4 and MD-2 were required for activation by LPS, as assessed by NFkappaB activation and IL-8 production. Induction of IFN bioactivity was not observed in doubly transduced HEK293 cells, and no evidence for IFN-beta mRNA induction in response to LPS was obtained, although cells responded by IFN-beta mRNA expression to stimulation by Sendai virus and poly-inosinic acid-poly-cytidylic acid (poly(I:C)). Cells stably transduced with both bovine TLR4 and bovine MD-2 responded to LPS by IL-8 production, in decreasing order, in the presence of fetal bovine serum (FCS), of human serum, and of human serum albumin (HSA). The reduced activity in the presence of HSA could be restored by the addition of soluble CD14 (sCD14) but not of LPS binding protein (LBP). This is in contrast to macrophages which show a superior response to LPS in the presence of HSA when compared with macrophages stimulated by LPS in the presence of FCS. This suggests that macrophages but not HEK293 cells express factors rendering LPS stimulation serum-independent. Stably double-transduced cells reacted, in decreasing order, to LPS from Rhodobacter sphaeroides, to LPS from Escherichia coli, to synthetic lipd-IVa (compound 406), to diphosphoryl-lipid-A (S. minnesota) and to monophosphoryl-lipid-A (S. minnesota). They failed to react to the murine MD-2/TLR4 ligand taxol. This resembles the reactivity of bovine macrophages with regard to sensitivity (ED(50)) and order of potency but is distinct from the reactivity pattern of other species. This formally establishes that in order to react to LPS, cattle cells require serum factors (e.g. sCD14) and cell-expressed factors such as MD-2 and TLR4. The cell lines described are the first of a series expressing defined pattern recognition receptors (PRR) of bovine origin. They will be useful in the study of the interaction of the bovine TLR4-MD-2 complex and Gram-negative bovine pathogens, e.g. the agents causing Gram-negative bovine mastitis.