943 resultados para Particle-in-cell simulations
Resumo:
Nucleoside transporters (NTs) mediate the uptake of nucleosides and nucleobases across the plasma membrane, mostly for salvage purposes. The canonical NTs belong to two gene families, SLC29 and SLC28. The former encode equilibrative nucleoside transporter proteins (ENTs), which mediate the facilitative diffusion of natural nucleosides with broad selectivity, whereas the latter encode concentrative nucleoside transporters (CNTs), which are sodium-coupled and show high affinity for substrates with variable selectivity. These proteins are expressed in most cell types, exhibiting apparent functional redundancy. This might indicate that CNTs play specific roles in the physiology of the cell beyond nucleoside salvage. Here, we addressed this possibility using adenoviral vectors to restore tumor cell expression of hCNT1 or a polymorphic variant (hCNT1S546P) lacking nucleoside translocation ability. We found that hCNT1 restoration in pancreatic cancer cells significantly altered cell-cycle progression and phosphorylation status of key signal-transducing kinases, promoted poly-(ADP ribose) polymerase hyperactivation and cell death, and reduced tumor growth and cell migration. Importantly, the translocation-defective transporter triggered these same effects on cell physiology. These data predict a novel and totally unexpected biological role for the nucleoside transporter protein hCNT1 that appears to be independent of its role as mediator of nucleoside uptake by cells, thereby suggesting a transceptor function. Cell Death & Disease Anastasis Stephanou Receiving Editor Cell Death & Disease 19th Apr 2013 Dr Perez-Torras Av/ Diagonal 643. Edif. Prevosti, Pl -1 Barcelona 08028 Spain RE: Manuscript CDDIS-13-0136R, 'CDDIS-13-0136R' Dear Dr Perez-Torras, It is a pleasure to inform you that your manuscript has been evaluated at the editorial level and has now been officially accepted for publication in Cell Death & Disease, pending you meet the following editorial requirements: 1) the list of the abbreviations is missing please include Could you send us the revised text as word file via e-mail and we will proceed and transfer the paper onto our typesetters. Please download, print, sign, and return the Licence to Publish Form using the link below. This must be returned via FAX to ++ 39 06 7259 6977 before your manuscript can be published:
Resumo:
Background: Nucleoside analogs used in the chemotherapy of solid tumors, such as the capecitabine catabolite50-deoxy-5-fluorouridine (50-DFUR) trigger a transcriptomic response that involves the aquaglyceroporin aquaporin 3 along with other p53-dependent genes. Here, we examined whether up-regulation of aquaporin 3 (AQP3) mRNA incancer cells treated with 50-DFUR represents a collateral transcriptomic effect of the drug, or conversely, AQP3participates in the activity of genotoxic agents. Methods: The role of AQP3 in cell volume increase, cytotoxicity and cell cycle arrest was analyzed using loss-of-function approaches. Results: 50-DFUR and gemcitabine, but not cisplatin, stimulated AQP3 expression and cell volume, which was partially and significantly blocked by knockdown of AQP3. Moreover, AQP3 siRNA significantly blocked other effects of nucleoside analogs, including G1/S cell cycle arrest, p21 and FAS up-regulation, and cell growth inhibition. Short incubations with 5-fluorouracil (5-FU) also induced AQP3 expression and increased cell volume, and the inhibition of AQP3 expression significantly blocked growth inhibition triggered by this drug. To further establish whether AQP3 induction is related to cell cycle arrest and apoptosis, cells were exposed to long incubations with escalating doses of 5-FU. AQP3 was highly up-regulated at doses associated with cell cycle arrest, whereas at doses promoting apoptosis induction of AQP3 mRNA expression was reduced. Conclusions: Based on the results, we propose that the aquaglyceroporin AQP3 is required for cytotoxic activity of 5’-DFUR and gemcitabine in the breast cancer cell line MCF7 and the colon adenocarcinoma cell line HT29, and is implicated in cell volume increase and cell cycle arrest.
Resumo:
Background: Nucleoside analogs used in the chemotherapy of solid tumors, such as the capecitabine catabolite50-deoxy-5-fluorouridine (50-DFUR) trigger a transcriptomic response that involves the aquaglyceroporin aquaporin 3 along with other p53-dependent genes. Here, we examined whether up-regulation of aquaporin 3 (AQP3) mRNA incancer cells treated with 50-DFUR represents a collateral transcriptomic effect of the drug, or conversely, AQP3participates in the activity of genotoxic agents. Methods: The role of AQP3 in cell volume increase, cytotoxicity and cell cycle arrest was analyzed using loss-of-function approaches. Results: 50-DFUR and gemcitabine, but not cisplatin, stimulated AQP3 expression and cell volume, which was partially and significantly blocked by knockdown of AQP3. Moreover, AQP3 siRNA significantly blocked other effects of nucleoside analogs, including G1/S cell cycle arrest, p21 and FAS up-regulation, and cell growth inhibition. Short incubations with 5-fluorouracil (5-FU) also induced AQP3 expression and increased cell volume, and the inhibition of AQP3 expression significantly blocked growth inhibition triggered by this drug. To further establish whether AQP3 induction is related to cell cycle arrest and apoptosis, cells were exposed to long incubations with escalating doses of 5-FU. AQP3 was highly up-regulated at doses associated with cell cycle arrest, whereas at doses promoting apoptosis induction of AQP3 mRNA expression was reduced. Conclusions: Based on the results, we propose that the aquaglyceroporin AQP3 is required for cytotoxic activity of 5’-DFUR and gemcitabine in the breast cancer cell line MCF7 and the colon adenocarcinoma cell line HT29, and is implicated in cell volume increase and cell cycle arrest.
Resumo:
Glioblastoma (GBM) is the most common and most aggressive malignant primary brain tumour. Despite the aggressiveness of the applied therapy, the prognosis remains poor with a median survival to of about 15 months. It is important to identify new candidate genes that could have clinical application in this disease. Previous gene expression studies from human GBM samples in our laboratory, revealed Ubiquitin Specific Peptidase 15 (USP15) as a gene with low expression, significantly associated with genomic deletions of the chromosomal region encompassing the USP15 locus. USP15 belongs to the ubiquitin-specific protease (USPs) family of which the main role is the reversion of ubiquitination and thereby stabilization of substrates. Previously, USP15 has been suggested to have a tumour suppressor function via its substrates APC and Caspase 3. We established GBM cell lines that stably express USP15 wt or its catalytic mutant. USP15 expression impairs cell growth by inhibiting cell cycle progression. On the other hand USP15 depletion in GBM cell lines induces cell cycle progression and proliferation. In order to identify the molecular pathways in which USP15 is implicated we aimed to identify protein-binding partners in the GBM cell line LN-229 by Mass spectrometry. As a result we identified eight new proteins that interact with USP15. These proteins are involved in important cellular processes like cytokinesis, cell cycle, cellular migration, and apoptosis. Three of these protein interactions were confirmed by co-immunoprecipitation in four GBM cell lines LN-229, LN428, LN18, LN-Z308. One of the binding proteins is HECTD1 E3 ligase of which the murine homologue promotes the APC-Axin interaction to negatively regulate the Wnt pathway. USP15 can de-ubiquitinate HECTD1 in the LN229 cell line while its depletion led to decrease of HECTD1 in GBM cell lines suggesting stabilizing role for USP15. Moreover, HECTD1 stable expression in LN229 inhibits cell cycle, while its depletion induces cell cycle progression. These results suggest that the USP15-HECTD1 interaction might enhance the antiproliferative effect of HECTD1 in GBM cell lines. Using the TOPflash/FOPflash luciferase system we showed that HECTD1 and USP15 overexpression can attenuate WNT pathway activity, and decrease the Axin2 expression. These data indicate that this new protein interaction of USP15 with HECTD1 results in negative regulation of the WNT pathway in GBM cell lines. Further investigation of the regulation of this interaction or of the protein binding network of HECTD1 in GBM may allow the discovery of new therapeutic targets. Finally PTPIP51 and KIF15 are the other two identified protein partners of USP15. These two proteins are involved in cell proliferation and their depletion in LN-229 cell line led to induction of cell cycle progression. USP15 displays a stabilizing role for them. Hence, these results show that the tumour suppressive role of USP15 in GBM cell line via different molecular mechanisms indicating the multidimensional function of USP15. Résumé Le glioblastome (GBM) est la tumeur primaire la plus fréquente et la plus agressive du cervau caractérisée par une survie médiane d'environ à 15 mois. De précédant travaux effectués au sein de notre laboratoire portant sur l'étude de l'expression de gènes pour des échantillons humains de GBM ont montré que le gène Ubiquitin Specific Peptidase 15 (USP1S) était significativement associée à une délétion locales à 25% des cas. Initialement, les substrats protéiques APC et CaspaseS de USP15 ont conduit à considérer cette protéine comme un suppresseur de tumeur. USP15 appartient à la famille protèsse spécifique de l'ubiquitine (USPs) dont le rôle principal est la réversion de l'ubiquitination et la stabilisation de substrats. Par conséquent, nous avons établi des lignées de cellules de glioblastome qui expriment de manière stable USP15 ou bien son mutant catalytique. Ainsi, nous avons ainsi démontré que l'expression de l'USP15 empêche la croissance cellulaire en inhibant la progression du cycle cellulaire. Inversement, la suppression de l'expression du gène USP15 dans les lignées cellulaires de glioblastome induit la progression du cycle cellulaire et la prolifération. Afin d'identifier les voies moléculaires dans lesquelles sont impliquées USP15, nous avons cherché à identifier les partenaires de liaisons protéiques par spectrométrie de masse dans la lignée cellulaire LN-229. Ainsi, huit nouvelles protéines interagissant avec USP15 ont été identifiées dont la ligase E3 HECTD1. L'homologue murin de Hectdl favorise l'interaction APC-Axin en régulant négativement la voie de signalisation de Wnt. USP15 interagit en désubiquitinant HECTD1 dans la lignée cellulaire LN-229 et provoque ainsi l'atténuation de l'activité de cette voie de signalisation. En conclusion, HECTD1, en interagissant avec USP15, joue un rôle de suppresseur de tumeur dans les lignées cellulaire de GBM.
Resumo:
The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.
Resumo:
Since the discovery of hypocretins/orexins (Hcrt/Ox) in 1998, several narcoleptic mouse models, such as Hcrt-KO, Hcrtrl-KO, Hcrtr2-KO and double receptors KO mice, and orexin-ataxin transgenic mice were generated. The available Hcrt mouse models do not allow the dissection of the specific role of Hcrt in each target region. Dr. Anne Vassalli generated loxP-flanked alleles for each Hcrt receptor, which are manipulated by Cre recombinase to generate mouse lines with disrupted Hcrtrl or Hcrtr2 (or both) in cell type-specific manner. The role of noradrenaline (NA) and dopamine (OA) in ttie regulation of vigilance states is well documented. The purpose of this thesis is to explore the role of the Hcrt input into these two monoaminergic systems. Chronic loss of Hcrtrl in NA neurons consolidated paradoxical sleep (PS), and altered wakefulness brain activity in baseline, during the sleep deprivation (SD), and when mice were challenged by a novel environment, or exposed to nest-building material. The analysis of alterations in the sleep EEG delta power showed a consistent correlation with the changes in the preceding waking quality in these mice. Targeted inactivation of Hcrt input into DA neurons showed that Hcrtr2 inactivation present the strongest phenotype. The loss of Hcrtr2 in DA neurons caused modified brain activities in spontaneous wakefulness, during SD, and in novel environmental conditions. In addition to alteration of wakefulness quality and quantity, conditional inactivation of Hcrtr2 in DA neurons caused an increased in time spent in PS in baseline and a delayed and less complete PS recovery after SD. In the first 30 min of sleep recovery, single (i.e. for Hcrtrl or Hcrtr2) conditional knockout receptor mice had opposite changes in delta activity, including an increased power density in the fast delta range with specific inactivation of Hcrtr2, but a decreased power density in the same range with specific inactivation of Hcrtrl in DA cells. These studies demonstrate a complex impact of Hcrt receptors signaling in both NA and DA system, not only on quantity and quality of wakefulness, but also on PS amount regulation as well as on SWS delta power expression. -- Depuis la découverte des hypocrétines/orexines (Hcrt/Ox) en 1998, plusieurs modèles de souris, narcoleptiques telles que Hcrt-KO, Hcrtr2-KO et récepteurs doubles KO et les souris transgéniques orexine-ataxine ont été générés. Les modèles de souris Hcrt disponibles ne permettaient pas la dissection du rôle spécifique de l'Hcrt dans chaque noyau neuronal cible. Notre laboratoire a généré des allèles loxP pour chacun des 2 gènes codant pour les récepteurs Hcrtr, qui sont manipulés par recombinase Cre pour générer des lignées de souris avec Hcrtrl inactivé, ou Hcrtr2 inactivé, (ou les deux), spécifiquement dans un type cellulaire particulier. Le rôle de la noradrénaline (NA) et la dopamine (DA) dans la régulation des états de vigilance est bien documentée. Le but de cette thèse est d'étudier le rôle de l'afférence Hcrt dans ces deux systèmes monoaminergiques au niveau de l'activité cérébrale telle qu'elle apparaît dans l'électroencéphalogramme (EEG). Mon travail montre que la perte chronique de Hcrtrl dans les neurones NA consolide le sommeil paradoxal (PS), et l'activité cérébrale de l'éveil est modifiée en condition spontanée, au cours d'une experience de privation de sommeil (SD), et lorsque les souris sont présentées à un nouvel environnement, ou exposées à des matériaux de construction du nid. Ces modifications de l'éveil sont corrélées à des modifications de puissance de l'activité delta du sommeil lent qui le suit. L'inactivation ciblée des Hcrtrs dans les neurones DA a montré que l'inactivation Hcrtr2 conduit au phénotype le plus marqué. La perte de Hcrtr2 dans les neurones DA mène à des modification d'activité cérébrale en éveil spontané, pendant SD, ainsi que dans des conditions environnementales nouvelles. En plus de l'altération de la qualité de l'éveil et de la quantité, l'inactivation conditionnelle de Hcrtr2 dans les neurones DA a provoqué une augmentation du temps passé en sommeil paradoxal (PS) en condition de base, et une reprise retardée et moins complète du PS après SD. Dans les 30 premières minutes de la récupération de sommeil, les modèles inactivés pour un seul des récepteurs (ie pour Hcrtrl ou Hcrtr2 seulement) montrent des changements opposés en activité delta, en particulier une densité de puissance accrue dans le delta rapide avec l'inactivation spécifique de Hcrtr2, mais une densité de puissance diminuée dans cette même gamme chez les souris inactivées spécifiquement en Hcrtrl dans les neurones DA. Ces études démontrent un impact complexe de l'inactivation de la neurotransmission au niveau des récepteurs d'Hcrt dans les deux compartiments NA et DA, non seulement sur la quantité et la qualité de l'éveil, mais aussi sur la régulation de quantité de sommeil paradoxal, ainsi que sur l'expression de la puissance delta pendant le sommeil lent.
Dynamic single cell measurements of kinase activity by synthetic kinase activity relocation sensors.
Resumo:
BACKGROUND: Mitogen activated protein kinases (MAPK) play an essential role in integrating extra-cellular signals and intra-cellular cues to allow cells to grow, adapt to stresses, or undergo apoptosis. Budding yeast serves as a powerful system to understand the fundamental regulatory mechanisms that allow these pathways to combine multiple signals and deliver an appropriate response. To fully comprehend the variability and dynamics of these signaling cascades, dynamic and quantitative single cell measurements are required. Microscopy is an ideal technique to obtain these data; however, novel assays have to be developed to measure the activity of these cascades. RESULTS: We have generated fluorescent biosensors that allow the real-time measurement of kinase activity at the single cell level. Here, synthetic MAPK substrates were engineered to undergo nuclear-to-cytoplasmic relocation upon phosphorylation of a nuclear localization sequence. Combination of fluorescence microscopy and automated image analysis allows the quantification of the dynamics of kinase activity in hundreds of single cells. A large heterogeneity in the dynamics of MAPK activity between individual cells was measured. The variability in the mating pathway can be accounted for by differences in cell cycle stage, while, in the cell wall integrity pathway, the response to cell wall stress is independent of cell cycle stage. CONCLUSIONS: These synthetic kinase activity relocation sensors allow the quantification of kinase activity in live single cells. The modularity of the architecture of these reporters will allow their application in many other signaling cascades. These measurements will allow to uncover new dynamic behaviour that previously could not be observed in population level measurements.
Resumo:
Amyloid-β peptide (Aβ) aggregates induce nitro-oxidative stress, contributing to the characteristic neurodegeneration found in Alzheimer's disease (AD). One of the most strongly nitrotyrosinated proteins in AD is the triosephosphate isomerase (TPI) enzyme which regulates glycolytic flow, and its efficiency decreased when it is nitrotyrosinated. The main aims of this study were to analyze the impact of TPI nitrotyrosination on cell viability and to identify the mechanism behind this effect. In human neuroblastoma cells (SH-SY5Y), we evaluated the effects of Aβ42 oligomers on TPI nitrotyrosination. We found an increased production of methylglyoxal (MG), a toxic byproduct of the inefficient nitro-TPI function. The proapoptotic effects of Aβ42 oligomers, such as decreasing the protective Bcl2 and increasing the proapoptotic caspase-3 and Bax, were prevented with a MG chelator. Moreover, we used a double mutant TPI (Y165F and Y209F) to mimic nitrosative modifications due to Aβ action. Neuroblastoma cells transfected with the double mutant TPI consistently triggered MG production and a decrease in cell viability due to apoptotic mechanisms. Our data show for the first time that MG is playing a key role in the neuronal death induced by Aβ oligomers. This occurs because of TPI nitrotyrosination, which affects both tyrosines associated with the catalytic center.
Resumo:
The effects of dark-induced stress on the evolution of the soluble metabolites present in senescent soybean (Glycine max L.) nodules were analysed in vitro using C-13- and P-31-NMR spectroscopy. Sucrose and trehalose were the predominant soluble storage carbons. During dark-induced stress, a decline in sugars and some key glycolytic metabolites was observed. Whereas 84% of the sucrose disappeared, only one-half of the trehalose was utilised. This decline coincides with the depletion of Gln, Asn, Ala and with an accumulation of ureides, which reflect a huge reduction of the N-2 fixation. Concomitantly, phosphodiesters and compounds like P-choline, a good marker of membrane phospholipids hydrolysis and cell autophagy, accumulated in the nodules. An autophagic process was confirmed by the decrease in cell fatty acid content. In addition, a slight increase in unsaturated fatty acids (oleic and linoleic acids) was observed, probably as a response to peroxidation reactions. Electron microscopy analysis revealed that, despite membranes dismantling, most of the bacteroids seem to be structurally intact. Taken together, our results show that the carbohydrate starvation induced in soybean by dark stress triggers a profound metabolic and structural rearrangement in the infected cells of soybean nodule which is representative of symbiotic cessation.
Resumo:
This is the first TEM examination of vitellogenesis in the cestode Aporhynchus menezesi, a parasite of the velvet belly lanternshark Etmopterus spinax and a member of a little-studied trypanorhynch family, the Aporhynchidae. The synthetic activity of vitellocytes plays two important functions in the developmental biology of cestodes: (1) their shell-globules serve in eggshell formation; and (2) their accumulated reserves of glycogen and lipids represent a food source for the developing embryo. In A. menezesi, vitelline follicles consist of cells at various stages of development, from peripheral, immature cells of the gonial type to mature cells towards the centre of the follicle. These stages are: (I) immature; (II) early differentiation; (III) advanced maturation; and (IV) mature. Gradual changes involved in this process occur within each stage. Vitellogenesis involves: (1) an increase in cell volume; (2) the development of a smooth endoplasmic reticulum and an accelerated formation and accumulation of both unsaturated and saturated lipid droplets, along with their continuous enlargement and fusion; (3) the formation of individual β-glycogen particles and their accumulation in the form of glycogen islands scattered among lipid droplets in the cytoplasm of maturing and mature vitellocytes; (4) the rapid accumulation of large, moderately saturated lipid droplets accompanied by dense accumulations of β-glycogen along with proteinaceous shell-globules or shell-globule clusters in the peripheral layer during the advanced stage of maturation; (5) the development of cisternae of granular endoplasmic reticulum that produce dense, proteinaceous shell-globules; (6) the development of Golgi complexes engaged in the packaging of this material; and (7) the progressive and continuous enlargement of shell-globules into very large clusters in the peripheral layer during the advanced stage of maturation. Vitellogenesis in A. menezesi, only to some extent, resembles that previously described for four other trypanorhynchs. It differs in: (i) the reversed order of secretory activities in the differentiating vitellocytes, namely the accumulation of large lipid droplets accompanied by glycogenesis or β-glycogen formation during early differentiation (stage II), i.e. before the secretory activity, which is predominantly protein synthesis for shell-globule formation (stage III); (ii) the very heavy accumulation of large lipid droplets during the final stage of cytodifferentiation (stage IV); and (iii) the small number of β-glycogen particles present in mature vitellocytes. Ultracytochemical staining with PA-TCH-SP for glycogen proved positive for a small number of β-glycogen particles in differentiating and mature vitellocytes. Hypotheses, concerning the interrelationships of patterns of vitellogenesis, possible modes of egg formation, embryonic development and life-cycles, are commented upon.
Resumo:
This is the first TEM examination of vitellogenesis in the cestode Aporhynchus menezesi, a parasite of the velvet belly lanternshark Etmopterus spinax and a member of a little-studied trypanorhynch family, the Aporhynchidae. The synthetic activity of vitellocytes plays two important functions in the developmental biology of cestodes: (1) their shell-globules serve in eggshell formation; and (2) their accumulated reserves of glycogen and lipids represent a food source for the developing embryo. In A. menezesi, vitelline follicles consist of cells at various stages of development, from peripheral, immature cells of the gonial type to mature cells towards the centre of the follicle. These stages are: (I) immature; (II) early differentiation; (III) advanced maturation; and (IV) mature. Gradual changes involved in this process occur within each stage. Vitellogenesis involves: (1) an increase in cell volume; (2) the development of a smooth endoplasmic reticulum and an accelerated formation and accumulation of both unsaturated and saturated lipid droplets, along with their continuous enlargement and fusion; (3) the formation of individual β-glycogen particles and their accumulation in the form of glycogen islands scattered among lipid droplets in the cytoplasm of maturing and mature vitellocytes; (4) the rapid accumulation of large, moderately saturated lipid droplets accompanied by dense accumulations of β-glycogen along with proteinaceous shell-globules or shell-globule clusters in the peripheral layer during the advanced stage of maturation; (5) the development of cisternae of granular endoplasmic reticulum that produce dense, proteinaceous shell-globules; (6) the development of Golgi complexes engaged in the packaging of this material; and (7) the progressive and continuous enlargement of shell-globules into very large clusters in the peripheral layer during the advanced stage of maturation. Vitellogenesis in A. menezesi, only to some extent, resembles that previously described for four other trypanorhynchs. It differs in: (i) the reversed order of secretory activities in the differentiating vitellocytes, namely the accumulation of large lipid droplets accompanied by glycogenesis or β-glycogen formation during early differentiation (stage II), i.e. before the secretory activity, which is predominantly protein synthesis for shell-globule formation (stage III); (ii) the very heavy accumulation of large lipid droplets during the final stage of cytodifferentiation (stage IV); and (iii) the small number of β-glycogen particles present in mature vitellocytes. Ultracytochemical staining with PA-TCH-SP for glycogen proved positive for a small number of β-glycogen particles in differentiating and mature vitellocytes. Hypotheses, concerning the interrelationships of patterns of vitellogenesis, possible modes of egg formation, embryonic development and life-cycles, are commented upon.
Resumo:
The Snail zinc-finger transcription factors trigger epithelial-mesenchymal transitions (EMTs), endowing epithelial cells with migratory and invasive properties during both embryonic development and tumor progression. During EMT, Snail provokes the loss of epithelial markers, as well as changes in cell shape and the expression of mesenchymal markers. Here, we show that in addition to inducing dramatic phenotypic alterations, Snail attenuates the cell cycle and confers resistance to cell death induced by the withdrawal of survival factors and by pro-apoptotic signals. Hence, Snail favors changes in cell shape versus cell division, indicating that with respect to oncogenesis, although a deregulation/increase in proliferation is crucial for tumor formation and growth, this may not be so for tumor malignization. Finally, the resistance to cell death conferred by Snail provides a selective advantage to embryonic cells to migrate and colonize distant territories, and to malignant cells to separate from the primary tumor, invade, and form metastasis.
Resumo:
Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results have high potential to generate significant information for development of regenerative and anti cancer therapies.
Resumo:
Bone engineering is a rapidly developing area of reconstructive medicine where bone inducing factors and/or cells are combined with a scaffold material to regenerate the structure and function of the original tissue. The aim of this study was to compare the suitability of different macroporous scaffold types for bone engineering applications. The two scaffold categories studied were a) the mechanically strong and stable titanium fiber meshes and b) the elastic and biodegradable porous polymers. Furthermore, bioactive modifications were applied to these basic scaffold types, and their effect on the osteogenic responses was evaluated in cell culture and ectopic bone formation studies. The osteogenic phenotype of cultured cell-scaffold constructs was heightened with a sol-gel derived titania coating, but not with a mixed titania-silica coating. The latter coating also resulted in delayed ectopic bone formation in bone marrow stromal cell seeded scaffolds. However, the better bone contact in early implantation times and more even bone tissue distribution at later times indicated enhanced osteoconductivity of both the coated scaffold types. Overall, the most promising bone engineering results were obtained with titania coated fiber meshes. Elastic and biodegradable poly(ε-caprolactone/D,L-lactide) based scaffolds were also developed in this study. The degradation rates of the scaffolds in vitro were governed by the hydrophilicity of the polymer matrix, and the porous architecture was controlled by the amount and type of porogen used. A continuous phase macroporosity was obtained using a novel CaCl2 • 6H2O porogen. Dynamic culture conditions increased cell invasion, but decreased cell numbers and osteogenicity, within the scaffolds. Osteogenic differentiation in static cultures and ectopic bone formation in cell seeded scaffolds were enhanced in composites, with 30 wt-% of bioactive glass filler.
Resumo:
Inducible nitric oxide synthase (iNOS) functions as a homodimer. In cell extracts, iNOS molecules partition both in cytosolic and particulate fractions, indicating that iNOS exists as soluble and membrane associated forms. In this study, iNOS features were investigated in human intestinal epithelial cells stimulated with cytokines and in duodenum from mice exposed to flagellin. Our experiments indicate that iNOS is mainly associated with the particulate fraction of cell extracts. Confocal microscopy showed a preferential localization of iNOS at the apical pole of intestinal epithelial cells. In particulate fractions, iNOS dimers were more abundant than in the cytosolic fraction. Similar observations were seen in mouse duodenum samples. These results suggest that, in epithelial cells, iNOS activity is regulated by localization-dependent processes.