987 resultados para Parameters kinetic
Resumo:
A set of experimental system to study hydrate dissociation in porous media is built and some experiments on hydrate dissociation by depressurization are carried out. A mathematical model is developed to simulate the hydrate dissociation by depressurization in hydrate-bearing porous media. The model can be used to analyze the effects of the flow of multiphase fluids, the kinetic process and endothermic process of hydrate dissociation, ice-water phase equilibrium, the variation of permeability, convection and conduction on the hydrate dissociation, and gas and water productions. The numerical results agree well with the experimental results, which validate our mathematical model. For a 3-D hydrate reservoir of Class 3, the evolutions of pressure, temperature, and saturations are elucidated and the effects of some main parameters on gas and water rates are analyzed. Numerical results show that gas can be produced effectively from hydrate reservoir in the first stage of depressurization. Then, methods such as thermal stimulation or inhibitor injection should be considered due to the energy deficiency of formation energy. The numerical results for 3-D hydrate reservoir of Class 1 show that the overlying gas hydrate zone can apparently enhance gas rate and prolong life span of gas reservoir.
Resumo:
In response to infection or tissue dysfunction, immune cells develop into highly heterogeneous repertoires with diverse functions. Capturing the full spectrum of these functions requires analysis of large numbers of effector molecules from single cells. However, currently only 3-5 functional proteins can be measured from single cells. We developed a single cell functional proteomics approach that integrates a microchip platform with multiplex cell purification. This approach can quantitate 20 proteins from >5,000 phenotypically pure single cells simultaneously. With a 1-million fold miniaturization, the system can detect down to ~100 molecules and requires only ~104 cells. Single cell functional proteomic analysis finds broad applications in basic, translational and clinical studies. In the three studies conducted, it yielded critical insights for understanding clinical cancer immunotherapy, inflammatory bowel disease (IBD) mechanism and hematopoietic stem cell (HSC) biology.
To study phenotypically defined cell populations, single cell barcode microchips were coupled with upstream multiplex cell purification based on up to 11 parameters. Statistical algorithms were developed to process and model the high dimensional readouts. This analysis evaluates rare cells and is versatile for various cells and proteins. (1) We conducted an immune monitoring study of a phase 2 cancer cellular immunotherapy clinical trial that used T-cell receptor (TCR) transgenic T cells as major therapeutics to treat metastatic melanoma. We evaluated the functional proteome of 4 antigen-specific, phenotypically defined T cell populations from peripheral blood of 3 patients across 8 time points. (2) Natural killer (NK) cells can play a protective role in chronic inflammation and their surface receptor – killer immunoglobulin-like receptor (KIR) – has been identified as a risk factor of IBD. We compared the functional behavior of NK cells that had differential KIR expressions. These NK cells were retrieved from the blood of 12 patients with different genetic backgrounds. (3) HSCs are the progenitors of immune cells and are thought to have no immediate functional capacity against pathogen. However, recent studies identified expression of Toll-like receptors (TLRs) on HSCs. We studied the functional capacity of HSCs upon TLR activation. The comparison of HSCs from wild-type mice against those from genetics knock-out mouse models elucidates the responding signaling pathway.
In all three cases, we observed profound functional heterogeneity within phenotypically defined cells. Polyfunctional cells that conduct multiple functions also produce those proteins in large amounts. They dominate the immune response. In the cancer immunotherapy, the strong cytotoxic and antitumor functions from transgenic TCR T cells contributed to a ~30% tumor reduction immediately after the therapy. However, this infused immune response disappeared within 2-3 weeks. Later on, some patients gained a second antitumor response, consisted of the emergence of endogenous antitumor cytotoxic T cells and their production of multiple antitumor functions. These patients showed more effective long-term tumor control. In the IBD mechanism study, we noticed that, compared with others, NK cells expressing KIR2DL3 receptor secreted a large array of effector proteins, such as TNF-α, CCLs and CXCLs. The functions from these cells regulated disease-contributing cells and protected host tissues. Their existence correlated with IBD disease susceptibility. In the HSC study, the HSCs exhibited functional capacity by producing TNF-α, IL-6 and GM-CSF. TLR stimulation activated the NF-κB signaling in HSCs. Single cell functional proteome contains rich information that is independent from the genome and transcriptome. In all three cases, functional proteomic evaluation uncovered critical biological insights that would not be resolved otherwise. The integrated single cell functional proteomic analysis constructed a detail kinetic picture of the immune response that took place during the clinical cancer immunotherapy. It revealed concrete functional evidence that connected genetics to IBD disease susceptibility. Further, it provided predictors that correlated with clinical responses and pathogenic outcomes.
Resumo:
The physico-chemical parameters of the surface water of Shiroro Lake and its major tributaries at their entry point to the reservoir were assessed over a period of eighteen months. As in other African inland water bodies there were seasonal variations in the parameters measured. The hydrological regime of the lake, precipitation chemistry, bedrock chemistry and hydro-electric power generation influence and determine the inputs of dissolved organic carbon, nutrient levels and water quality of the lake. The added nutrients to the lake by means of the major tributary rivers and inundation of surrounding areas also influence the water quality of the lake. The wet season mean values for water and air temperature were significantly (P <0.05) higher than dry season mean values in all stations. However, for pH, Dissolved oxygen and Phosphate-phosphorus the dry season mean values were higher than wet season mean values
Resumo:
Part I
Particles are a key feature of planetary atmospheres. On Earth they represent the greatest source of uncertainty in the global energy budget. This uncertainty can be addressed by making more measurement, by improving the theoretical analysis of measurements, and by better modeling basic particle nucleation and initial particle growth within an atmosphere. This work will focus on the latter two methods of improvement.
Uncertainty in measurements is largely due to particle charging. Accurate descriptions of particle charging are challenging because one deals with particles in a gas as opposed to a vacuum, so different length scales come into play. Previous studies have considered the effects of transition between the continuum and kinetic regime and the effects of two and three body interactions within the kinetic regime. These studies, however, use questionable assumptions about the charging process which resulted in skewed observations, and bias in the proposed dynamics of aerosol particles. These assumptions affect both the ions and particles in the system. Ions are assumed to be point monopoles that have a single characteristic speed rather than follow a distribution. Particles are assumed to be perfect conductors that have up to five elementary charges on them. The effects of three body interaction, ion-molecule-particle, are also overestimated. By revising this theory so that the basic physical attributes of both ions and particles and their interactions are better represented, we are able to make more accurate predictions of particle charging in both the kinetic and continuum regimes.
The same revised theory that was used above to model ion charging can also be applied to the flux of neutral vapor phase molecules to a particle or initial cluster. Using these results we can model the vapor flux to a neutral or charged particle due to diffusion and electromagnetic interactions. In many classical theories currently applied to these models, the finite size of the molecule and the electromagnetic interaction between the molecule and particle, especially for the neutral particle case, are completely ignored, or, as is often the case for a permanent dipole vapor species, strongly underestimated. Comparing our model to these classical models we determine an “enhancement factor” to characterize how important the addition of these physical parameters and processes is to the understanding of particle nucleation and growth.
Part II
Whispering gallery mode (WGM) optical biosensors are capable of extraordinarily sensitive specific and non-specific detection of species suspended in a gas or fluid. Recent experimental results suggest that these devices may attain single-molecule sensitivity to protein solutions in the form of stepwise shifts in their resonance wavelength, \lambda_{R}, but present sensor models predict much smaller steps than were reported. This study examines the physical interaction between a WGM sensor and a molecule adsorbed to its surface, exploring assumptions made in previous efforts to model WGM sensor behavior, and describing computational schemes that model the experiments for which single protein sensitivity was reported. The resulting model is used to simulate sensor performance, within constraints imposed by the limited material property data. On this basis, we conclude that nonlinear optical effects would be needed to attain the reported sensitivity, and that, in the experiments for which extreme sensitivity was reported, a bound protein experiences optical energy fluxes too high for such effects to be ignored.
Resumo:
β-lactamases are a group of enzymes that confer resistance to penam and cephem antibiotics by hydrolysis of the β-lactam ring, thereby inactivating the antibiotic. Crystallographic and computer modeling studies of RTEM-1 β-lactamase have indicated that Asp 132, a strictly conserved residue among the class A β-lactamases, appears to be involved in substrate binding, catalysis, or both. To study the contribution of residue 132 to β-lactamase function, site saturation mutagenesis was used to generate mutants coding for all 20 amino acids at position 132. Phenotypic screening of all mutants indicated that position 132 is very sensitive to amino acid changes, with only N132C, N132D, N132E, and N132Q showing any appreciable activity. Kinetic analysis of three of these mutants showed increases in K_M, along with substantial decreases in k_(cat). Efforts to trap a stable acyl-enzyme intermediate were unsuccessfuL These results indicate that residue 132 is involved in substrate binding, as well as catalysis, and supports the involvement of this residue in acylation as suggested by Strynadka et al.
Crystallographic and computer modeling studies of RTEM-1 β-lactamase have indicated that Lys 73 and Glu 166, two strictly conserved residues among the class A β-lactamases, appear to be involved in substrate binding, catalysis, or both. To study the contribution of these residues to β-lactamase function, site saturation mutagenesis was used to generate mutants coding for all 20 amino acids at positions 73 and 166. Then all 400 possible combinations of mutants were created by combinatorial mutagenesis. The colonies harboring the mutants were screened for growth in the presence of ampicillin. The competent colonys' DNA were sequenced, and kinetic parameters investigated. It was found that lysine is essential at position 73, and that position 166 only tolerated fairly conservative changes (Aspartic acid, Histidine, and Tyrosine). These functional mutants exhibited decreased kcat's, but K_M was close to wild-type levels. The results of the combinatorial mutagenesis experiments indicate that Lysis absolutely required for activity at position 73; no mutation at residue 166 can compensate for loss of the long side chain amine. The active mutants found--K73K/E166D, K73KIE166H, and K73KIE166Y were studied by kinetic analysis. These results reaffirmed the function of residue 166 as important in catalysis, specifically deacylation.
The identity of the residue responsible for enhancing the active site serine (Ser 70) in RTEM-1 β-lactamase has been disputed for some time. Recently, analysis of a crystal structure of RTEM-1 β-lactamase with covalently bound intermediate was published, and it was suggested that Lys 73, a strictly conserved residue among the class A β-lactamases, was acting as a general base, activating Ser 70. For this to be possible, the pK_a of Lys 73 would have to be depressed significantly. In an attempt to assay the pK_a of Lys 73, the mutation K73C was made. This mutant protein can be reacted with 2-bromoethylamine, and activity is restored to near wild type levels. ^(15)N-2-bromoethylamine hydrobromide and ^(13)C-2-bromoethylamine hydrobromide were synthesized. Reacting these compounds with the K73C mutant gives stable isotopic enrichment at residue 73 in the form of aminoethylcysteine, a lysine homologue. The pK_a of an amine can be determined by NMR titration, following the change in chemical shift of either the ^(15)N-amine nuclei or adjacent Be nuclei as pH is changed. Unfortunately, low protein solubility, along with probable label scrambling in the Be experiment, did not permit direct observation of either the ^(15)N or ^(13)C signals. Indirect detection experiments were used to observe the protons bonded directly to the ^(13)C atoms. Two NMR signals were seen, and their chemical shift change with pH variation was noted. The peak which was determined to correspond to the aminoethylcysteine residue shifted from 3.2 ppm down to 2.8 ppm over a pH range of 6.6 to 12.5. The pK_a of the amine at position 73 was determined to be ~10. This indicates that residue 73 does not function as a general base in the acylation step of the reaction. However the experimental measurement takes place in the absence of substrate. Since the enzyme undergoes conformational changes upon substrate binding, the measured pK_a of the free enzyme may not correspond to the pK_a of the enzyme substrate complex.
Resumo:
The effect of physico-chemical parameters and plankton composition on fish production in ponds was investigated in six fish farms for eight weeks. The physicochemical parameters investigated were temperature=25-30 plus or minus C, transparency=0.45-0.57m, dissolved oxygen=3.0-10.9mg/l, pH=6.0-7.7, dissolved carbon dioxide=5.46-28.3mg/l, total alkalinity=44.37-80.0ppm, chemical oxygen demand=31.88-72.18mg/l and biological oxygen demand=0.66-48.34mg/l. Plankton composition varies and was made of four families of phytoplankton namely; Cyanophyceae, Chlorophyceae, Dinophyceae and Diatomida; and four families of zooplankton viz; Protozoa, Rotifera, Copepoda and Dinoflagellates. Farm 1 and 6 recorded the highest average weight of about 1.0kg and average total length of about 40.0cm for the two fish species. This study showed that fish yield was dependable on the quality and management of pond water characteristics
Resumo:
The effect of physico-chemical parameters and plankton composition on fish production in ponds was investigated in six fish farms for eight weeks. The physicochemical parameters investigated were temperature=25-30 plus or minus C, transparency=0.45-0.57m, dissolved oxygen=3.0-10.9mg/l, pH=6.0-7.7, dissolved carbon dioxide=5.46-28.3mg/l, total alkalinity=44.37-80.0ppm, chemical oxygen demand=31.88-72.18mg/l and biological oxygen demand=0.66-48.34mg/l. Plankton composition varies and was made of four families of phytoplankton namely: Cyanophyceae, Chlorophyceae, Dinophyceae and Diatomida; and four families of zooplankton viz: Protozoa, Rotifera, Copepoda and Dinoflagellates. Farm 1 and 6 recorded the highest average weight of about 1.0kg and average total length of about 40.0cm for the two fish species. This study showed that fish yield was dependable on the quality and management of pond water characteristics
Resumo:
In this thesis, we provide a statistical theory for the vibrational pooling and fluorescence time dependence observed in infrared laser excitation of CO on an NaCl surface. The pooling is seen in experiment and in computer simulations. In the theory, we assume a rapid equilibration of the quanta in the substrate and minimize the free energy subject to the constraint at any time t of a fixed number of vibrational quanta N(t). At low incident intensity, the distribution is limited to one- quantum exchanges with the solid and so the Debye frequency of the solid plays a key role in limiting the range of this one-quantum domain. The resulting inverted vibrational equilibrium population depends only on fundamental parameters of the oscillator (ωe and ωeχe) and the surface (ωD and T). Possible applications and relation to the Treanor gas phase treatment are discussed. Unlike the solid phase system, the gas phase system has no Debye-constraining maximum. We discuss the possible distributions for arbitrary N-conserving diatom-surface pairs, and include application to H:Si(111) as an example.
Computations are presented to describe and analyze the high levels of infrared laser-induced vibrational excitation of a monolayer of absorbed 13CO on a NaCl(100) surface. The calculations confirm that, for situations where the Debye frequency limited n domain restriction approximately holds, the vibrational state population deviates from a Boltzmann population linearly in n. Nonetheless, the full kinetic calculation is necessary to capture the result in detail.
We discuss the one-to-one relationship between N and γ and the examine the state space of the new distribution function for varied γ. We derive the Free Energy, F = NγkT − kTln(∑Pn), and effective chemical potential, μn ≈ γkT, for the vibrational pool. We also find the anti correlation of neighbor vibrations leads to an emergent correlation that appears to extend further than nearest neighbor.
Resumo:
This thesis presents a technique for obtaining the response of linear structural systems with parameter uncertainties subjected to either deterministic or random excitation. The parameter uncertainties are modeled as random variables or random fields, and are assumed to be time-independent. The new method is an extension of the deterministic finite element method to the space of random functions.
First, the general formulation of the method is developed, in the case where the excitation is deterministic in time. Next, the application of this formulation to systems satisfying the one-dimensional wave equation with uncertainty in their physical properties is described. A particular physical conceptualization of this equation is chosen for study, and some engineering applications are discussed in both an earthquake ground motion and a structural context.
Finally, the formulation of the new method is extended to include cases where the excitation is random in time. Application of this formulation to the random response of a primary-secondary system is described. It is found that parameter uncertainties can have a strong effect on the system response characteristics.
Resumo:
Theoretical and experimental investigations of charge-carrier dynamics at semiconductor/liquid interfaces, specifically with respect to interfacial electron transfer and surface recombination, are presented.
Fermi's golden rule has been used to formulate rate expressions for charge transfer of delocalized carriers in a nondegenerately doped semiconducting electrode to localized, outer-sphere redox acceptors in an electrolyte phase. The treatment allows comparison between charge-transfer kinetic data at metallic, semimetallic, and semiconducting electrodes in terms of parameters such as the electronic coupling to the electrode, the attenuation of coupling with distance into the electrolyte, and the reorganization energy of the charge-transfer event. Within this framework, rate constant values expected at representative semiconducting electrodes have been determined from experimental data for charge transfer at metallic electrodes. The maximum rate constant (i.e., at optimal exoergicity) for outer-sphere processes at semiconducting electrodes is computed to be in the range 10-17-10-16 cm4 s-1, which is in excellent agreement with prior theoretical models and experimental results for charge-transfer kinetics at semiconductor/liquid interfaces.
Double-layer corrections have been evaluated for semiconductor electrodes in both depletion and accumulation conditions. In conjuction with the Gouy-Chapman-Stern model, a finite difference approach has been used to calculate potential drops at a representative solid/liquid interface. Under all conditions that were simulated, the correction to the driving force used to evaluate the interfacial rate constant was determined to be less than 2% of the uncorrected interfacial rate constant.
Photoconductivity decay lifetimes have been obtained for Si(111) in contact with solutions of CH3OH or tetrahydrofuran containing one-electron oxidants. Silicon surfaces in contact with electrolyte solutions having Nernstian redox potentials > 0 V vs. SCE exhibited low effective surface recombination velocities regardless of the different surface chemistries. The formation of an inversion layer, and not a reduced density of electrical trap sites on the surface, is shown to be responsible for the long charge-carrier lifetimes observed for these systems. In addition, a method for preparing an air-stable, low surface recombination velocity Si surface through a two-step, chlorination/alkylation reaction is described.
Resumo:
This work proposes a new simulation methodology in which variable density turbulent flows can be studied in the context of a mixing layer with or without the presence of gravity. Specifically, this methodology is developed to probe the nature of non-buoyantly-driven (i.e. isotropically-driven) or buoyantly-driven mixing deep inside a mixing layer. Numerical forcing methods are incorporated into both the velocity and scalar fields, which extends the length of time over which mixing physics can be studied. The simulation framework is designed to allow for independent variation of four non-dimensional parameters, including the Reynolds, Richardson, Atwood, and Schmidt numbers. Additionally, the governing equations are integrated in such a way to allow for the relative magnitude of buoyant energy production and non-buoyant energy production to be varied.
The computational requirements needed to implement the proposed configuration are presented. They are justified in terms of grid resolution, order of accuracy, and transport scheme. Canonical features of turbulent buoyant flows are reproduced as validation of the proposed methodology. These features include the recovery of isotropic Kolmogorov scales under buoyant and non-buoyant conditions, the recovery of anisotropic one-dimensional energy spectra under buoyant conditions, and the preservation of known statistical distributions in the scalar field, as found in other DNS studies.
This simulation methodology is used to perform a parametric study of turbulent buoyant flows to discern the effects of varying the Reynolds, Richardson, and Atwood numbers on the resulting state of mixing. The effects of the Reynolds and Atwood numbers are isolated by looking at two energy dissipation rate conditions under non-buoyant (variable density) and constant density conditions. The effects of Richardson number are isolated by varying the ratio of buoyant energy production to total energy production from zero (non-buoyant) to one (entirely buoyant) under constant Atwood number, Schmidt number, and energy dissipation rate conditions. It is found that the major differences between non-buoyant and buoyant turbulent flows are contained in the transfer spectrum and longitudinal structure functions, while all other metrics are largely similar (e.g. energy spectra, alignment characteristics of the strain-rate tensor). Also, despite the differences noted between fully buoyant and non-buoyant turbulent fields, the scalar field, in all cases, is unchanged by these. The mixing dynamics in the scalar field are found to be insensitive to the source of turbulent kinetic energy production (non-buoyant vs. buoyant).
Resumo:
Por ser um material de baixo custo e apresentar propriedades ligantes, a macroalga marinha Sargassum filipendula vem sendo utilizada como material biossorvente no processo de biossorção de metais. No presente trabalho a alga marrom foi utilizada no estudo cinético e de equilíbrio dos íons de tório e urânio individuais e os resultados comparados à biossorção desses metais em sistema binário. Os testes foram realizados nas concentrações 1 e 10 mg/L e pH= 1,0 e 4,0 na temperatura de 25 1C. A melhor condição para biossorção de tório foi encontrada para 1 mg/L e pH= 1,0, enquanto que para urânio foi em 1 mg/L e pH= 4,0. O estudo cinético de biossorção de tório mostrou que o modelo de segunda ordem descreve melhor os dados experimentais em 1 mg/L (R2= 0,9987) e 10 mg/L (R2= 0,9919) em pH= 1,0 e 1 mg/L (R2= 0,9976) em pH= 4,0, enquanto em 10 mg/L (R2= 0,9787) pH= 4,0 a curva encontrada representou uma cinética de primeira ordem. Para a cinética de urânio os dois modelos se adequaram bem aos dados em ambas as condições experimentais. O estudo de equilíbrio mostrou um perfil crescente de captação de tório, com uma remoção de 96% e 54% do metal em pH= 1,0 e 4,0, respectivamente, a partir da Co= 1 mg/L. A melhor eficiência de captação dos íons de urânio foi de 33% para Co= 100 mg/L em pH= 1,0 e 71% para Co= 1 mg/L em pH= 4,0. Os dados experimentais da isoterma de tório mostraram-se mais adequados ao modelo de Freundlich para pH= 1,0, enquanto que para o pH= 4,0 esses foram melhor representados pelo modelo de Langmuir, com valores de coeficiente de determinação superiores. Em relação à isoterma do urânio, o modelo de Freundlich representou bem os dados experimentais. Os parâmetros de equilíbrio calculados a partir do modelo de Langmuir (kL, qmax ) e Freundlich (kF, n) indicaram uma maior afinidade da biomassa pelos íons de tório em ambas as condições experimentais. O estudo de equilíbrio do sistema binário mostrou que a biossorção dos íons de tório não é afetada pela presença do urânio em solução. Por outro lado, a sorção do urânio foi fortemente afetada pela coexistência com os íons de tório.
Resumo:
In order to develop better catalysts for the cleavage of aryl-X bonds fundamental studies of the mechanism and individual steps of the mechanism have been investigated in detail. As the described studies are difficult at best in catalytic systems, model systems are frequently used. To study aryl-oxygen bond activation, a terphenyl diphosphine scaffold containing an ether moiety in the central arene was designed. The first three chapters of this dissertation focus on the studies of the nickel complexes supported by this diphosphine backbone and the research efforts in regards to aryl-oxygen bond activation.
Chapter 2 outlines the synthesis of a variety of diphosphine terphenyl ether ligand scaffolds. The metallation of these scaffolds with nickel is described. The reactivity of these nickel(0) systems is also outlined. The systems were found to typically undergo a reductive cleavage of the aryl oxygen bond. The mechanism was found to be a subsequent oxidative addition, β-H elimination, reductive elimination and (or) decarbonylation.
Chapter 3 presents kinetic studies of the aryl oxygen bond in the systems outlined in Chapter 2. Using a series of nickel(0) diphosphine terphenyl ether complexes the kinetics of aryl oxygen bond activation was studied. The activation parameters of oxidative addition for the model systems were determined. Little variation was observed in the rate and activation parameters of oxidative addition with varying electronics in the model system. The cause of the lack of variation is due to the ground state and oxidative addition transition state being affected similarly. Attempts were made to extend this study to catalytic systems.
Chapter 4 investigates aryl oxygen bond activation in the presence of additives. It was found that the addition of certain metal alkyls to the nickel(0) model system lead to an increase in the rate of aryl oxygen bond activation. The addition of excess Grignard reagent led to an order of magnitude increase in the rate of aryl oxygen bond activation. Similarly the addition of AlMe3 led to a three order of magnitude rate increase. Addition of AlMe3 at -80 °C led to the formation of an intermediate which was identified by NOESY correlations as a system in which the AlMe3 is coordinated to the ether moiety of the backbone. The rates and activation parameters of aryl oxygen bond activation in the presence of AlMe3 were investigated.
The last two chapters involve the study of metalla-macrocycles as ligands. Chapter 5 details the synthesis of a variety of glyoxime backbones and diphenol precursors and their metallation with aluminum. The coordination chemistry of iron on the aluminum scaffolds was investigated. Varying the electronics of the aluminum macrocycle was found to affect the observed electrochemistry of the iron center.
Chapter 6 extends the studies of chapter 5 to cobalt complexes. The synthesis of cobalt dialuminum glyoxime metal complexes is described. The electrochemistry of the cobalt complexes was investigated. The electrochemistry was compared to the observed electrochemistry of a zinc analog to identify the redox activity of the ligand. In the presence of acid the cobalt complexes were found to electrochemically reduce protons to dihydrogen. The electronics of the ancillary aluminum ligands were found to affect the potential of proton reduction in the cobalt complexes. These potentials were compared to other diglyoximate complexes.
Resumo:
Close to equilibrium, a normal Bose or Fermi fluid can be described by an exact kinetic equation whose kernel is nonlocal in space and time. The general expression derived for the kernel is evaluated to second order in the interparticle potential. The result is a wavevector- and frequency-dependent generalization of the linear Uehling-Uhlenbeck kernel with the Born approximation cross section.
The theory is formulated in terms of second-quantized phase space operators whose equilibrium averages are the n-particle Wigner distribution functions. Convenient expressions for the commutators and anticommutators of the phase space operators are obtained. The two-particle equilibrium distribution function is analyzed in terms of momentum-dependent quantum generalizations of the classical pair distribution function h(k) and direct correlation function c(k). The kinetic equation is presented as the equation of motion of a two -particle correlation function, the phase space density-density anticommutator, and is derived by a formal closure of the quantum BBGKY hierarchy. An alternative derivation using a projection operator is also given. It is shown that the method used for approximating the kernel by a second order expansion preserves all the sum rules to the same order, and that the second-order kernel satisfies the appropriate positivity and symmetry conditions.