988 resultados para Parameter Optimization
Resumo:
This research work involves the determination and modelling of water parameter such as pH, temperature, turbidity, chloride, hardness. The result of the analysis was used as important operating variables to generate a model equation of pH, hardness, temperature, turbidity and chloride. The values obtained from the model equation were compared with those from experiment. On an average bases the values were close. These parameters can be used to monitor the extent of pollution of pond water and to monitor stress and diseases of fish. The experimental data of pH was in the range of 6.7 to 6.9 while the modelled result was also between 6.7 to 7.0. The turbidity experimental value was close to the modelled value also. The chloride value for the experimental data was in the range of 25.32 to 35.0. The total hardness value ranges between 4.5 to 65.1 mg/l while the modelled result ranges between 11.025 to 68.402 mg/l. The result was within the acceptable limit of world health organization standard on water quality parameter.
Resumo:
We aim to characterize fault slip behavior during all stages of the seismic cycle in subduction megathrust environments with the eventual goal of understanding temporal and spatial variations of fault zone rheology, and to infer possible causal relationships between inter-, co- and post-seismic slip, as well as implications for earthquake and tsunami hazard. In particular we focus on analyzing aseismic deformation occurring during inter-seismic and post-seismic periods of the seismic cycle. We approach the problem using both Bayesian and optimization techniques. The Bayesian approach allows us to completely characterize the model parameter space by searching a posteriori estimates of the range of allowable models, to easily implement any kind of physically plausible a priori information and to perform the inversion without regularization other than that imposed by the parameterization of the model. However, the Bayesian approach computational expensive and not currently viable for quick response scenarios. Therefore, we also pursue improvements in the optimization inference scheme. We present a novel, robust and yet simple regularization technique that allows us to infer robust and somewhat more detailed models of slip on faults. We apply such methodologies, using simple quasi-static elastic models, to perform studies of inter- seismic deformation in the Central Andes subduction zone, and post-seismic deformation induced by the occurrence of the 2011 Mw 9.0 Tohoku-Oki earthquake in Japan. For the Central Andes, we present estimates of apparent coupling probability of the subduction interface and analyze its relationship to past earthquakes in the region. For Japan, we infer high spatial variability in material properties of the megathrust offshore Tohoku. We discuss the potential for a large earthquake just south of the Tohoku-Oki earthquake where our inferences suggest dominantly aseismic behavior.
Resumo:
Many engineering applications face the problem of bounding the expected value of a quantity of interest (performance, risk, cost, etc.) that depends on stochastic uncertainties whose probability distribution is not known exactly. Optimal uncertainty quantification (OUQ) is a framework that aims at obtaining the best bound in these situations by explicitly incorporating available information about the distribution. Unfortunately, this often leads to non-convex optimization problems that are numerically expensive to solve.
This thesis emphasizes on efficient numerical algorithms for OUQ problems. It begins by investigating several classes of OUQ problems that can be reformulated as convex optimization problems. Conditions on the objective function and information constraints under which a convex formulation exists are presented. Since the size of the optimization problem can become quite large, solutions for scaling up are also discussed. Finally, the capability of analyzing a practical system through such convex formulations is demonstrated by a numerical example of energy storage placement in power grids.
When an equivalent convex formulation is unavailable, it is possible to find a convex problem that provides a meaningful bound for the original problem, also known as a convex relaxation. As an example, the thesis investigates the setting used in Hoeffding's inequality. The naive formulation requires solving a collection of non-convex polynomial optimization problems whose number grows doubly exponentially. After structures such as symmetry are exploited, it is shown that both the number and the size of the polynomial optimization problems can be reduced significantly. Each polynomial optimization problem is then bounded by its convex relaxation using sums-of-squares. These bounds are found to be tight in all the numerical examples tested in the thesis and are significantly better than Hoeffding's bounds.
Resumo:
Optical parametric chirped pulse amplification with different pump wavelengths was investigated using LBO crystal, at signal central wavelength of 800 nm. According to our theoretical simulation, when pump wavelength is 492.5 nm, there is a maximal gain bandwidth of 190 nm. centered at 805 nm in optimal noncollinear angle using LBO. Presently, pump wavelength of 492.5 nm can be obtained from second harmonic generation of a Yb:Sr-5(PO4)(3)F laser. The broad gain bandwidth can completely support similar to 6 fs with a spectral centre of seed pulse at 800 nm. The deviation from optimal noncollinear angle can be compensated by accurately tuning crystal angle for phase matching. The gain spectrum with pump wavelength of 492.5 nm is much better than those with pump wavelengths of 400, 526.5 and 532 nm, at signal centre of 800 nm. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We show that the peak intensity of single attosecond x-ray pulses is enhanced by 1 or 2 orders of magnitude, the pulse duration is greatly compressed, and the optimal propagation distance is shortened by genetic algorithm optimization of the chirp and initial phase of 5 fs laser pulses. However, as the laser intensity increases, more efficient nonadiabatic self-phase matching can lead to a dramatically enhanced harmonic yield, and the efficiency of optimization decreases in the enhancement and compression of the generated attosecond pulses. (c) 2006 Optical Society of America.
Optimization of high-order harmonic by genetic algorithm for the chirp and phase of few-cycle pulses
Resumo:
The brightness of a particular harmonic order is optimized for the chirp and initial phase of the laser pulse by genetic algorithm. The influences of the chirp and initial phase of the excitation pulse on the harmonic spectra are discussed in terms of the semi-classical model including the propagation effects. The results indicate that the harmonic intensity and cutoff have strong dependence on the chirp of the laser pulse, but slightly on its initial phase. The high-order harmonics can be enhanced by the optimal laser pulse and its cutoff can be tuned by optimization of the chirp and initial phase of the laser pulse.
Resumo:
Plasma equilibrium geometry has a great influence on the confinement and magnetohydrodynamic stability in tokamaks. The poloidal field (PF) system of a tokamak should be optimized to support the prescribed plasma equilibrium geometry. In this paper, a genetic algorithm-based method is applied to solve the optimization of the positions and currents of tokamak PF coils. To achieve this goal, we first describe the free-boundary code EQT Based on the EQT code, a genetic algorithm-based method is introduced to the optimization. We apply this new method to the PF system design of the fusion-driven subcritical system and plasma equilibrium geometry optimization of the Experimental Advanced Superconducting Tokamak (EAST). The results indicate that the optimization of the plasma equilibrium geometry can be improved by using this method.
Resumo:
167 p.