878 resultados para Parallel processing (Electronic computers)
Resumo:
III-nitride materials are very promising for high speed electronics/optical applications but still suffer in performance due to problems during high quality epitaxial growth, evolution of dislocation and defects, less understanding of fundamental physics of materials/processing of devices etc. This thesis mainly focus on GaN based heterostructures to understand the metal-semiconductor interface properties, 2DE(H)G influence on electrical and optical properties, and deep level states in GaN and InAlN, InGaN materials. The detailed electrical characterizations have been employed on Schottky diodes at GaN and InAl(Ga)N/GaN heterostructures in order to understand the metal-semiconductor interface related properties in these materials. I have observed the occurrence of Schottky barrier inhomogenity, role of dislocations in terms of leakage and creating electrically active defect states within energy gap of materials. Deep level transient spectroscopy method is employed on GaN, InAlN and InGaN materials and several defect levels have been observed related to majority and minority carriers. In fact, some defects have been found common in characteristics in ternary layers and GaN layer which indicates that those defect levels are from similar origin, most probably due to Ga/N vacancy in GaN/heterostructures. The role of structural defects, roughness has been extensively understood in terms of enhancing the reverse leakage current, suppressing the mobility in InAlN/AlN/GaN based high electron mobility transistor (HEMT) structures which are identified as key issues for GaN technology. Optical spectroscopy methods have been employed to understand materials quality, sub band and defect related transitions and compared with electrical characterizations. The observation of 2DEG sub band related absorption/emission in optical spectra have been identified and proposed for first time in nitride based polar heterostructures, which is well supported with simulation results. In addition, metal-semiconductor-metal (MSM)-InAl(Ga)N/GaN based photodetector structures have been fabricated and proposed for achieving high efficient optoelectronics devices in future.
Resumo:
Ultrasound imaging is widely used in medical diagnostics as it is the fastest, least invasive, and least expensive imaging modality. However, ultrasound images are intrinsically difficult to be interpreted. In this scenario, Computer Aided Detection (CAD) systems can be used to support physicians during diagnosis providing them a second opinion. This thesis discusses efficient ultrasound processing techniques for computer aided medical diagnostics, focusing on two major topics: (i) Ultrasound Tissue Characterization (UTC), aimed at characterizing and differentiating between healthy and diseased tissue; (ii) Ultrasound Image Segmentation (UIS), aimed at detecting the boundaries of anatomical structures to automatically measure organ dimensions and compute clinically relevant functional indices. Research on UTC produced a CAD tool for Prostate Cancer detection to improve the biopsy protocol. In particular, this thesis contributes with: (i) the development of a robust classification system; (ii) the exploitation of parallel computing on GPU for real-time performance; (iii) the introduction of both an innovative Semi-Supervised Learning algorithm and a novel supervised/semi-supervised learning scheme for CAD system training that improve system performance reducing data collection effort and avoiding collected data wasting. The tool provides physicians a risk map highlighting suspect tissue areas, allowing them to perform a lesion-directed biopsy. Clinical validation demonstrated the system validity as a diagnostic support tool and its effectiveness at reducing the number of biopsy cores requested for an accurate diagnosis. For UIS the research developed a heart disease diagnostic tool based on Real-Time 3D Echocardiography. Thesis contributions to this application are: (i) the development of an automated GPU based level-set segmentation framework for 3D images; (ii) the application of this framework to the myocardium segmentation. Experimental results showed the high efficiency and flexibility of the proposed framework. Its effectiveness as a tool for quantitative analysis of 3D cardiac morphology and function was demonstrated through clinical validation.
Resumo:
Despite the several issues faced in the past, the evolutionary trend of silicon has kept its constant pace. Today an ever increasing number of cores is integrated onto the same die. Unfortunately, the extraordinary performance achievable by the many-core paradigm is limited by several factors. Memory bandwidth limitation, combined with inefficient synchronization mechanisms, can severely overcome the potential computation capabilities. Moreover, the huge HW/SW design space requires accurate and flexible tools to perform architectural explorations and validation of design choices. In this thesis we focus on the aforementioned aspects: a flexible and accurate Virtual Platform has been developed, targeting a reference many-core architecture. Such tool has been used to perform architectural explorations, focusing on instruction caching architecture and hybrid HW/SW synchronization mechanism. Beside architectural implications, another issue of embedded systems is considered: energy efficiency. Near Threshold Computing is a key research area in the Ultra-Low-Power domain, as it promises a tenfold improvement in energy efficiency compared to super-threshold operation and it mitigates thermal bottlenecks. The physical implications of modern deep sub-micron technology are severely limiting performance and reliability of modern designs. Reliability becomes a major obstacle when operating in NTC, especially memory operation becomes unreliable and can compromise system correctness. In the present work a novel hybrid memory architecture is devised to overcome reliability issues and at the same time improve energy efficiency by means of aggressive voltage scaling when allowed by workload requirements. Variability is another great drawback of near-threshold operation. The greatly increased sensitivity to threshold voltage variations in today a major concern for electronic devices. We introduce a variation-tolerant extension of the baseline many-core architecture. By means of micro-architectural knobs and a lightweight runtime control unit, the baseline architecture becomes dynamically tolerant to variations.
Resumo:
In vielen Bereichen der industriellen Fertigung, wie zum Beispiel in der Automobilindustrie, wer- den digitale Versuchsmodelle (sog. digital mock-ups) eingesetzt, um die Entwicklung komplexer Maschinen m ̈oglichst gut durch Computersysteme unterstu ̈tzen zu k ̈onnen. Hierbei spielen Be- wegungsplanungsalgorithmen eine wichtige Rolle, um zu gew ̈ahrleisten, dass diese digitalen Pro- totypen auch kollisionsfrei zusammengesetzt werden k ̈onnen. In den letzten Jahrzehnten haben sich hier sampling-basierte Verfahren besonders bew ̈ahrt. Diese erzeugen eine große Anzahl von zuf ̈alligen Lagen fu ̈r das ein-/auszubauende Objekt und verwenden einen Kollisionserken- nungsmechanismus, um die einzelnen Lagen auf Gu ̈ltigkeit zu u ̈berpru ̈fen. Daher spielt die Kollisionserkennung eine wesentliche Rolle beim Design effizienter Bewegungsplanungsalgorith- men. Eine Schwierigkeit fu ̈r diese Klasse von Planern stellen sogenannte “narrow passages” dar, schmale Passagen also, die immer dort auftreten, wo die Bewegungsfreiheit der zu planenden Objekte stark eingeschr ̈ankt ist. An solchen Stellen kann es schwierig sein, eine ausreichende Anzahl von kollisionsfreien Samples zu finden. Es ist dann m ̈oglicherweise n ̈otig, ausgeklu ̈geltere Techniken einzusetzen, um eine gute Performance der Algorithmen zu erreichen.rnDie vorliegende Arbeit gliedert sich in zwei Teile: Im ersten Teil untersuchen wir parallele Kollisionserkennungsalgorithmen. Da wir auf eine Anwendung bei sampling-basierten Bewe- gungsplanern abzielen, w ̈ahlen wir hier eine Problemstellung, bei der wir stets die selben zwei Objekte, aber in einer großen Anzahl von unterschiedlichen Lagen auf Kollision testen. Wir im- plementieren und vergleichen verschiedene Verfahren, die auf Hu ̈llk ̈operhierarchien (BVHs) und hierarchische Grids als Beschleunigungsstrukturen zuru ̈ckgreifen. Alle beschriebenen Verfahren wurden auf mehreren CPU-Kernen parallelisiert. Daru ̈ber hinaus vergleichen wir verschiedene CUDA Kernels zur Durchfu ̈hrung BVH-basierter Kollisionstests auf der GPU. Neben einer un- terschiedlichen Verteilung der Arbeit auf die parallelen GPU Threads untersuchen wir hier die Auswirkung verschiedener Speicherzugriffsmuster auf die Performance der resultierenden Algo- rithmen. Weiter stellen wir eine Reihe von approximativen Kollisionstests vor, die auf den beschriebenen Verfahren basieren. Wenn eine geringere Genauigkeit der Tests tolerierbar ist, kann so eine weitere Verbesserung der Performance erzielt werden.rnIm zweiten Teil der Arbeit beschreiben wir einen von uns entworfenen parallelen, sampling- basierten Bewegungsplaner zur Behandlung hochkomplexer Probleme mit mehreren “narrow passages”. Das Verfahren arbeitet in zwei Phasen. Die grundlegende Idee ist hierbei, in der er- sten Planungsphase konzeptionell kleinere Fehler zuzulassen, um die Planungseffizienz zu erh ̈ohen und den resultierenden Pfad dann in einer zweiten Phase zu reparieren. Der hierzu in Phase I eingesetzte Planer basiert auf sogenannten Expansive Space Trees. Zus ̈atzlich haben wir den Planer mit einer Freidru ̈ckoperation ausgestattet, die es erlaubt, kleinere Kollisionen aufzul ̈osen und so die Effizienz in Bereichen mit eingeschr ̈ankter Bewegungsfreiheit zu erh ̈ohen. Optional erlaubt unsere Implementierung den Einsatz von approximativen Kollisionstests. Dies setzt die Genauigkeit der ersten Planungsphase weiter herab, fu ̈hrt aber auch zu einer weiteren Perfor- mancesteigerung. Die aus Phase I resultierenden Bewegungspfade sind dann unter Umst ̈anden nicht komplett kollisionsfrei. Um diese Pfade zu reparieren, haben wir einen neuartigen Pla- nungsalgorithmus entworfen, der lokal beschr ̈ankt auf eine kleine Umgebung um den bestehenden Pfad einen neuen, kollisionsfreien Bewegungspfad plant.rnWir haben den beschriebenen Algorithmus mit einer Klasse von neuen, schwierigen Metall- Puzzlen getestet, die zum Teil mehrere “narrow passages” aufweisen. Unseres Wissens nach ist eine Sammlung vergleichbar komplexer Benchmarks nicht ̈offentlich zug ̈anglich und wir fan- den auch keine Beschreibung von vergleichbar komplexen Benchmarks in der Motion-Planning Literatur.
Resumo:
Ein System in einem metastabilen Zustand muss eine bestimmte Barriere in derrnfreien Energie überwinden um einen Tropfen der stabilen Phase zu formen.rnHerkömmliche Untersuchungen nehmen hierbei kugelförmige Tropfen an. Inrnanisotropen Systemen (wie z.B. Kristallen) ist diese Annahme aber nicht ange-rnbracht. Bei tiefen Temperaturen wirkt sich die Anisotropie des Systems starkrnauf die freie Energie ihrer Oberfläche aus. Diese Wirkung wird oberhalb derrnAufrauungstemperatur T R schwächer. Das Ising-Modell ist ein einfaches Mo-rndell, welches eine solche Anisotropie aufweist. Wir führen großangelegte Sim-rnulationen durch, um die Effekte, die mit einer endlichen Simulationsbox ein-rnhergehen, sowie statistische Ungenauigkeiten möglichst klein zu halten. DasrnAusmaß der Simulationen die benötigt werden um sinnvolle Ergebnisse zu pro-rnduzieren, erfordert die Entwicklung eines skalierbaren Simulationsprogrammsrnfür das Ising-Modell, welcher auf verschiedenen parallelen Architekturen (z.B.rnGrafikkarten) verwendet werden kann. Plattformunabhängigkeit wird durch ab-rnstrakte Schnittstellen erreicht, welche plattformspezifische Implementierungs-rndetails verstecken. Wir benutzen eine Systemgeometrie die es erlaubt eine Ober-rnfläche mit einem variablen Winkel zur Kristallebene zu untersuchen. Die Ober-rnfläche ist in Kontakt mit einer harten Wand, wobei der Kontaktwinkel Θ durchrnein Oberflächenfeld eingestellt werden kann. Wir leiten eine Differenzialglei-rnchung ab, welche das Verhalten der freien Energie der Oberfläche in einemrnanisotropen System beschreibt. Kombiniert mit thermodynamischer Integrationrnkann die Gleichung benutzt werden, um die anisotrope Oberflächenspannungrnüber einen großen Winkelbereich zu integrieren. Vergleiche mit früheren Mes-rnsungen in anderen Geometrien und anderen Methoden zeigen hohe Überein-rnstimung und Genauigkeit, welche vor allem durch die im Vergleich zu früherenrnMessungen wesentlich größeren Simulationsdomänen erreicht wird. Die Temper-rnaturabhängigkeit der Oberflächensteifheit κ wird oberhalb von T R durch diernKrümmung der freien Energie der Oberfläche für kleine Winkel gemessen. DiesernMessung lässt sich mit Simulationsergebnissen in der Literatur vergleichen undrnhat bessere Übereinstimmung mit theoretischen Voraussagen über das Skalen-rnverhalten von κ. Darüber hinaus entwickeln wir ein Tieftemperatur-Modell fürrndas Verhalten um Θ = 90 Grad weit unterhalb von T R. Der Winkel bleibt bis zu einemrnkritischen Feld H C quasi null; oberhalb des kritischen Feldes steigt der Winkelrnrapide an. H C wird mit der freien Energie einer Stufe in Verbindung gebracht,rnwas es ermöglicht, das kritische Verhalten dieser Größe zu analysieren. Die harternWand muss in die Analyse einbezogen werden. Durch den Vergleich freier En-rnergien bei geschickt gewählten Systemgrößen ist es möglich, den Beitrag derrnKontaktlinie zur freien Energie in Abhängigkeit von Θ zu messen. Diese Anal-rnyse wird bei verschiedenen Temperaturen durchgeführt. Im letzten Kapitel wirdrneine 2D Fluiddynamik Simulation für Grafikkarten parallelisiert, welche u. a.rnbenutzt werden kann um die Dynamik der Atmosphäre zu simulieren. Wir im-rnplementieren einen parallelen Evolution Galerkin Operator und erreichen
Resumo:
Die rasante Entwicklung der Computerindustrie durch die stetige Verkleinerung der Transistoren führt immer schneller zum Erreichen der Grenze der Si-Technologie, ab der die Tunnelprozesse in den Transistoren ihre weitere Verkleinerung und Erhöhung ihrer Dichte in den Prozessoren nicht mehr zulassen. Die Zukunft der Computertechnologie liegt in der Verarbeitung der Quanteninformation. Für die Entwicklung von Quantencomputern ist die Detektion und gezielte Manipulation einzelner Spins in Festkörpern von größter Bedeutung. Die Standardmethoden der Spindetektion, wie ESR, erlauben jedoch nur die Detektion von Spinensembles. Die Idee, die das Auslesen von einzelnen Spins ermöglich sollte, besteht darin, die Manipulation getrennt von der Detektion auszuführen.rn Bei dem NV−-Zentrum handelt es sich um eine spezielle Gitterfehlstelle im Diamant, die sich als einen atomaren, optisch auslesbaren Magnetfeldsensor benutzen lässt. Durch die Messung seiner Fluoreszenz sollte es möglich sein die Manipulation anderer, optisch nicht detektierbaren, “Dunkelspins“ in unmittelbarer Nähe des NV-Zentrums mittels der Spin-Spin-Kopplung zu detektieren. Das vorgeschlagene Modell des Quantencomputers basiert auf dem in SWCNT eingeschlossenen N@C60.Die Peapods, wie die Einheiten aus den in Kohlenstoffnanoröhre gepackten Fullerenen mit eingefangenem Stickstoff genannt werden, sollen die Grundlage für die Recheneinheiten eines wahren skalierbaren Quantencomputers bilden. Die in ihnen mit dem Stickstoff-Elektronenspin durchgeführten Rechnungen sollen mit den oberflächennahen NV-Zentren (von Diamantplatten), über denen sie positioniert sein sollen, optisch ausgelesen werden.rnrnDie vorliegende Arbeit hatte das primäre Ziel, die Kopplung der oberflächennahen NV-Einzelzentren an die optisch nicht detektierbaren Spins der Radikal-Moleküle auf der Diamantoberfläche mittels der ODMR-Kopplungsexperimente optisch zu detektieren und damit entscheidende Schritte auf dem Wege der Realisierung eines Quantenregisters zu tun.rn Es wurde ein sich im Entwicklungsstadium befindende ODMR-Setup wieder aufgebaut und seine bisherige Funktionsweise wurde an kommerziellen NV-Zentrum-reichen Nanodiamanten verifiziert. Im nächsten Schritt wurde die Effektivität und Weise der Messung an die Detektion und Manipulation der oberflächennah (< 7 nm Tiefe) implantieren NV-Einzelzenten in Diamantplatten angepasst.Ein sehr großer Teil der Arbeit, der hier nur bedingt beschrieben werden kann, bestand aus derrnAnpassung der existierenden Steuersoftware an die Problematik der praktischen Messung. Anschließend wurde die korrekte Funktion aller implementierten Pulssequenzen und anderer Software-Verbesserungen durch die Messung an oberflächennah implantierten NV-Einzelzentren verifiziert. Auch wurde der Messplatz um die zur Messung der Doppelresonanz notwendigen Komponenten wie einen steuerbaren Elektromagneten und RF-Signalquelle erweitert. Unter der Berücksichtigung der thermischen Stabilität von N@C60 wurde für zukünftige Experimente auch ein optischer Kryostat geplant, gebaut, in das Setup integriert und charakterisiert.rn Die Spin-Spin-Kopplungsexperimente wurden mit dem sauerstoffstabilen Galvinoxyl-Radikalals einem Modell-System für Kopplung durchgeführt. Dabei wurde über die Kopplung mit einem NVZentrum das RF-Spektrum des gekoppelten Radikal-Spins beobachtet. Auch konnte von dem gekoppelten Spin eine Rabi-Nutation aufgenommen werden.rn Es wurden auch weitere Aspekte der Peapod Messung und Oberflächenimplantation betrachtet.Es wurde untersucht, ob sich die NV-Detektion durch die SWCNTs, Peapods oder Fullerene stören lässt. Es zeigte sich, dass die Komponenten des geplanten Quantencomputers, bis auf die C60-Cluster, für eine ODMR-Messanordnung nicht detektierbar sind und die NV-Messung nicht stören werden. Es wurde auch betrachtet, welche Arten von kommerziellen Diamantplatten für die Oberflächenimplantation geeignet sind, für die Kopplungsmessungen geeignete Dichte der implantierten NV-Zentren abgeschätzt und eine Implantation mit abgeschätzter Dichte betrachtet.
Resumo:
This is the second part of a study investigating a model-based transient calibration process for diesel engines. The first part addressed the data requirements and data processing required for empirical transient emission and torque models. The current work focuses on modelling and optimization. The unexpected result of this investigation is that when trained on transient data, simple regression models perform better than more powerful methods such as neural networks or localized regression. This result has been attributed to extrapolation over data that have estimated rather than measured transient air-handling parameters. The challenges of detecting and preventing extrapolation using statistical methods that work well with steady-state data have been explained. The concept of constraining the distribution of statistical leverage relative to the distribution of the starting solution to prevent extrapolation during the optimization process has been proposed and demonstrated. Separate from the issue of extrapolation is preventing the search from being quasi-static. Second-order linear dynamic constraint models have been proposed to prevent the search from returning solutions that are feasible if each point were run at steady state, but which are unrealistic in a transient sense. Dynamic constraint models translate commanded parameters to actually achieved parameters that then feed into the transient emission and torque models. Combined model inaccuracies have been used to adjust the optimized solutions. To frame the optimization problem within reasonable dimensionality, the coefficients of commanded surfaces that approximate engine tables are adjusted during search iterations, each of which involves simulating the entire transient cycle. The resulting strategy, different from the corresponding manual calibration strategy and resulting in lower emissions and efficiency, is intended to improve rather than replace the manual calibration process.
Resumo:
The new crystalline compound, Li2PO2N, was synthesized using high temperature solid state methods starting with a stoichiometric mixture of Li2O, P2O5, and P3N5. Its crystal structure was determined ab initio from powder X-ray diffraction. The compound crystallizes in the orthorhombic space group Cmc2(1) (# 36) with lattice constants a = 9.0692(4) angstrom, b = 53999(2) angstrom, and c = 4.6856(2) angstrom. The crystal structure of SD-Li2PO2N consists of parallel arrangements of anionic chains formed of corner sharing (PO2N2) tetrahedra. The chains are held together by Li+ cations. The structure of the synthesized material is similar to that predicted by Du and Holzwarth on the basis of first principles calculations (Phys. Rev. B 81,184106 (2010)). The compound is chemically and structurally stable in air up to 600 degrees C and in vacuum up to 1050 degrees C. The Arrhenius activation energy of SD-Li2PO2N in pressed pellet form was determined from electrochemical impedance spectroscopy measurements to be 0.6 eV, comparable to that of the glassy electrolyte LiPON developed at Oak Ridge National Laboratory. The minimum activation energies for Li ion vacancy and interstitial migrations are computed to be 0.4 eV and 0.8 eV, respectively. First principles calculations estimate the band gap of SD-Li2PO2N to be larger than 6 eV. (C) 2013 Elsevier B.V. All rights reserved.
Processing and characterization of PbSnTe-based thermoelectric materials made by mechanical alloying
Resumo:
The research reported in this dissertation investigates the processes required to mechanically alloy Pb1-xSnxTe and AgSbTe2 and a method of combining these two end compounds to result in (y)(AgSbTe2)–(1 - y)(Pb1-xSnxTe) thermoelectric materials for power generation applications. In general, traditional melt processing of these alloys has employed high purity materials that are subjected to time and energy intensive processes that result in highly functional material that is not easily reproducible. This research reports the development of mechanical alloying processes using commercially available 99.9% pure elemental powders in order to provide a basis for the economical production of highly functional thermoelectric materials. Though there have been reports of high and low ZT materials fabricated by both melt alloying and mechanical alloying, the processing-structure-properties-performance relationship connecting how the material is made to its resulting functionality is poorly understood. This is particularly true for mechanically alloyed material, motivating an effort to investigate bulk material within the (y)(AgSbTe2)–(1 - y)(Pb1-xSnx- Te) system using the mechanical alloying method. This research adds to the body of knowledge concerning the way in which mechanical alloying can be used to efficiently produce high ZT thermoelectric materials. The processes required to mechanically alloy elemental powders to form Pb1-xSnxTe and AgSbTe2 and to subsequently consolidate the alloyed powder is described. The composition, phases present in the alloy, volume percent, size and spacing of the phases are reported. The room temperature electronic transport properties of electrical conductivity, carrier concentration and carrier mobility are reported for each alloy and the effect of the presence of any secondary phase on the electronic transport properties is described. An mechanical mixing approach for incorporating the end compounds to result in (y)(AgSbTe2)–(1-y)(Pb1-xSnxTe) is described and when 5 vol.% AgSbTe2 was incorporated was found to form a solid solution with the Pb1-xSnxTe phase. An initial attempt to change the carrier concentration of the Pb1-xSnxTe phase was made by adding excess Te and found that the carrier density of the alloys in this work are not sensitive to excess Te. It has been demonstrated using the processing techniques reported in this research that this material system, when appropriately doped, has the potential to perform as highly functional thermoelectric material.
Resumo:
The performance of memory-guided saccades with two different delays (3 s and 30 s of memorisation) was studied in eight subjects. Single pulse transcranial magnetic stimulation (TMS) was applied simultaneously over the left and right dorsolateral prefrontal cortex (DLPFC) 1 s after target presentation. In both delays, stimulation significantly increased the percentage of error in amplitude of memory-guided saccades. Furthermore, the interfering effect of TMS was significantly higher in the short delay compared to that of the long delay paradigm. The results are discussed in the context of a mixed model of spatial working memory control including two components: First, serial information processing with a predominant role of the DLPFC during the early period of memorisation and, second, parallel information processing, which is independent from the DLPFC, operating during longer delays.
Resumo:
Background Patients' health related quality of life (HRQoL) has rarely been systematically monitored in general practice. Electronic tools and practice training might facilitate the routine application of HRQoL questionnaires. Thorough piloting of innovative procedures is strongly recommended before the conduction of large-scale studies. Therefore, we aimed to assess i) the feasibility and acceptance of HRQoL assessment using tablet computers in general practice, ii) the perceived practical utility of HRQoL results and iii) to identify possible barriers hindering wider application of this approach. Methods Two HRQoL questionnaires (St. George's Respiratory Questionnaire SGRQ and EORTC QLQ-C30) were electronically presented on portable tablet computers. Wireless network (WLAN) integration into practice computer systems of 14 German general practices with varying infrastructure allowed automatic data exchange and the generation of a printout or a PDF file. General practitioners (GPs) and practice assistants were trained in a 1-hour course, after which they could invite patients with chronic diseases to fill in the electronic questionnaire during their waiting time. We surveyed patients, practice assistants and GPs regarding their acceptance of this tool in semi-structured telephone interviews. The number of assessments, HRQoL results and interview responses were analysed using quantitative and qualitative methods. Results Over the course of 1 year, 523 patients filled in the electronic questionnaires (1–5 times; 664 total assessments). On average, results showed specific HRQoL impairments, e.g. with respect to fatigue, pain and sleep disturbances. The number of electronic assessments varied substantially between practices. A total of 280 patients, 27 practice assistants and 17 GPs participated in the telephone interviews. Almost all GPs (16/17 = 94%; 95% CI = 73–99%), most practice assistants (19/27 = 70%; 95% CI = 50–86%) and the majority of patients (240/280 = 86%; 95% CI = 82–91%) indicated that they would welcome the use of electronic HRQoL questionnaires in the future. GPs mentioned availability of local health services (e.g. supportive, physiotherapy) (mean: 9.4 ± 1.0 SD; scale: 1 – 10), sufficient extra time (8.9 ± 1.5) and easy interpretation of HRQoL results (8.6 ± 1.6) as the most important prerequisites for their use. They believed HRQoL assessment facilitated both communication and follow up of patients' conditions. Practice assistants emphasised that this process demonstrated an extra commitment to patient centred care; patients viewed it as a tool, which contributed to the physicians' understanding of their personal condition and circumstances. Conclusion This pilot study indicates that electronic HRQoL assessment is technically feasible in general practices. It can provide clinically significant information, which can either be used in the consultation for routine care, or for research purposes. While GPs, practice assistants and patients were generally positive about the electronic procedure, several barriers (e.g. practices' lack of time and routine in HRQoL assessment) need to be overcome to enable broader application of electronic questionnaires in every day medical practice.
Resumo:
Perceptual integration of sensory input from our two nostrils has received little attention in comparison to lateralized inputs for vision and hearing. Here, we investigated whether a binary odor mixture of eugenol and l-carvone (smells of cloves and caraway) would be perceived differently if presented as a mixture in one nostril (physical mixture), vs. the same two odorants in separate nostrils (dichorhinic mixture). In parallel, we investigated whether the different types of presentation resulted in differences in olfactory event-related potentials (OERP). Psychophysical ratings showed that the dichorhinic mixtures were perceived as more intense than the physical mixtures. A tendency for shift in perceived quality was also observed. In line with these perceptual changes, the OERP showed a shift in latencies and amplitudes for early (more "sensory") peaks P1 and N1 whereas no significant differences were observed for the later (more "cognitive") peak P2. The results altogether suggest that the peripheral level is a site of interaction between odorants. Both psychophysical ratings and, for the first time, electrophysiological measurements converge on this conclusion.
Resumo:
The "EMR Tutorial" is designed to be a bilingual online physician education environment about electronic medical records. After iterative assessment and redesign, the tutorial was tested in two groups: U.S. physicians and Mexican medical students. Split-plot ANOVA revealed significantly different pre-test scores in the two groups, significant cognitive gains for the two groups overall, and no significant difference in the gains made by the two groups. Users rated the module positively on a satisfaction questionnaire.
Resumo:
The quick identification of potentially threatening events is a crucial cognitive capacity to survive in a changing environment. Previous functional MRI data revealed the right dorsolateral prefrontal cortex and the region of the left intraparietal sulcus (IPS) to be involved in the perception of emotionally negative stimuli. For assessing chronometric aspects of emotion processing, we applied transcranial magnetic stimulation above these areas at different times after negative and neutral picture presentation. An interference with emotion processing was found with transcranial magnetic stimulation above the dorsolateral prefrontal cortex 200-300 ms and above the left intraparietal sulcus 240/260 ms after negative stimuli. The data suggest a parallel and conjoint involvement of prefrontal and parietal areas for the identification of emotionally negative stimuli.
Resumo:
A. N. Turing’s 1936 concept of computability, computing machines, and computable binary digital sequences, is subject to Turing’s Cardinality Paradox. The paradox conjoins two opposed but comparably powerful lines of argument, supporting the propositions that the cardinality of dedicated Turing machines outputting all and only the computable binary digital sequences can only be denumerable, and yet must also be nondenumerable. Turing’s objections to a similar kind of diagonalization are answered, and the implications of the paradox for the concept of a Turing machine, computability, computable sequences, and Turing’s effort to prove the unsolvability of the Entscheidungsproblem, are explained in light of the paradox. A solution to Turing’s Cardinality Paradox is proposed, positing a higher geometrical dimensionality of machine symbol-editing information processing and storage media than is available to canonical Turing machine tapes. The suggestion is to add volume to Turing’s discrete two-dimensional machine tape squares, considering them instead as similarly ideally connected massive three-dimensional machine information cells. Three-dimensional computing machine symbol-editing information processing cells, as opposed to Turing’s two-dimensional machine tape squares, can take advantage of a denumerably infinite potential for parallel digital sequence computing, by which to accommodate denumerably infinitely many computable diagonalizations. A three-dimensional model of machine information storage and processing cells is recommended on independent grounds as better representing the biological realities of digital information processing isomorphisms in the three-dimensional neural networks of living computers.