856 resultados para Parallel and distributed systems
Resumo:
We consider the problem of self-healing in networks that are reconfigurable in the sense that they can change their topology during an attack. Our goal is to maintain connectivity in these networks, even in the presence of repeated adversarial node deletion, by carefully adding edges after each attack. We present a new algorithm, DASH, that provably ensures that: 1) the network stays connected even if an adversary deletes up to all nodes in the network; and 2) no node ever increases its degree by more than 2 log n, where n is the number of nodes initially in the network. DASH is fully distributed; adds new edges only among neighbors of deleted nodes; and has average latency and bandwidth costs that are at most logarithmic in n. DASH has these properties irrespective of the topology of the initial network, and is thus orthogonal and complementary to traditional topology- based approaches to defending against attack. We also prove lower-bounds showing that DASH is asymptotically optimal in terms of minimizing maximum degree increase over multiple attacks. Finally, we present empirical results on power-law graphs that show that DASH performs well in practice, and that it significantly outperforms naive algorithms in reducing maximum degree increase.
Resumo:
In this paper a model of grid computation that supports both heterogeneity and dynamicity is presented. The model presupposes that user sites contain software components awaiting execution on the grid. User sites and grid sites interact by means of managers which control dynamic behaviour. The orchestration language ORC [9,10] offers an abstract means of specifying operations for resource acquisition and execution monitoring while allowing for the possibility of non-responsive hardware. It is demonstrated that ORC is sufficiently expressive to model typical kinds of grid interactions.
Resumo:
We present a fully-distributed self-healing algorithm DEX, that maintains a constant degree expander network in a dynamic setting. To the best of our knowledge, our algorithm provides the first efficient distributed construction of expanders - whose expansion properties hold deterministically - that works even under an all-powerful adaptive adversary that controls the dynamic changes to the network (the adversary has unlimited computational power and knowledge of the entire network state, can decide which nodes join and leave and at what time, and knows the past random choices made by the algorithm). Previous distributed expander constructions typically provide only probabilistic guarantees on the network expansion which rapidly degrade in a dynamic setting, in particular, the expansion properties can degrade even more rapidly under adversarial insertions and deletions. Our algorithm provides efficient maintenance and incurs a low overhead per insertion/deletion by an adaptive adversary: only O(log n) rounds and O(log n) messages are needed with high probability (n is the number of nodes currently in the network). The algorithm requires only a constant number of topology changes. Moreover, our algorithm allows for an efficient implementation and maintenance of a distributed hash table (DHT) on top of DEX, with only a constant additional overhead. Our results are a step towards implementing efficient self-healing networks that have guaranteed properties (constant bounded degree and expansion) despite dynamic changes.
Resumo:
Scheduling jobs with deadlines, each of which defines the latest time that a job must be completed, can be challenging on the cloud due to incurred costs and unpredictable performance. This problem is further complicated when there is not enough information to effectively schedule a job such that its deadline is satisfied, and the cost is minimised. In this paper, we present an approach to schedule jobs, whose performance are unknown before execution, with deadlines on the cloud. By performing a sampling phase to collect the necessary information about those jobs, our approach delivers the scheduling decision within 10% cost and 16% violation rate when compared to the ideal setting, which has complete knowledge about each of the jobs from the beginning. It is noted that our proposed algorithm outperforms existing approaches, which use a fixed amount of resources by reducing the violation cost by at least two times.
Resumo:
A optimização estrutural é uma temática antiga em engenharia. No entanto, com o crescimento do método dos elementos finitos em décadas recentes, dá origem a um crescente número de aplicações. A optimização topológica, especificamente, surge associada a uma fase de definição de domínio efectivo de um processo global de optimização estrutural. Com base neste tipo de optimização, é possível obter a distribuição óptima de material para diversas aplicações e solicitações. Os materiais compósitos e alguns materiais celulares, em particular, encontram-se entre os materiais mais proeminentes dos nossos dias, em termos das suas aplicações e de investigação e desenvolvimento. No entanto, a sua estrutura potencialmente complexa e natureza heterogénea acarretam grandes complexidades, tanto ao nível da previsão das suas propriedades constitutivas quanto na obtenção das distribuições óptimas de constituintes. Procedimentos de homogeneização podem fornecer algumas respostas em ambos os casos. Em particular, a homogeneização por expansão assimptótica pode ser utilizada para determinar propriedades termomecânicas efectivas e globais a partir de volumes representativos, de forma flexível e independente da distribuição de constituintes. Além disso, integra processos de localização e fornece informação detalhada acerca de sensibilidades locais em metodologias de optimização multiescala. A conjugação destas áreas pode conduzir a metodologias de optimização topológica multiescala, nas quais de procede à obtenção não só de estruturas óptimas mas também das distribuições ideais de materiais constituintes. Os problemas associados a estas abordagens tendem, no entanto, a exigir recursos computacionais assinaláveis, criando muitas vezes sérias limitações à exequibilidade da sua resolução. Neste sentido, técnicas de cálculo paralelo e distribuído apresentam-se como uma potencial solução. Ao dividir os problemas por diferentes unidades memória e de processamento, é possível abordar problemas que, de outra forma, seriam proibitivos. O principal foco deste trabalho centra-se na importância do desenvolvimento de procedimentos computacionais para as aplicações referidas. Adicionalmente, estas conduzem a diversas abordagens alternativas na procura simultânea de estruturas e materiais para responder a aplicações termomecânicas. Face ao exposto, tudo isto é integrado numa plataforma computacional de optimização multiobjectivo multiescala em termoelasticidade, desenvolvida e implementada ao longo deste trabalho. Adicionalmente, o trabalho é complementado com a montagem e configuração de um cluster do tipo Beowulf, assim como com o desenvolvimento do código com vista ao cálculo paralelo e distribuído.
Resumo:
Consider the problem of scheduling a set of sporadically arriving tasks on a uniform multiprocessor with the goal of meeting deadlines. A processor p has the speed Sp. Tasks can be preempted but they cannot migrate between processors. We propose an algorithm which can schedule all task sets that any other possible algorithm can schedule assuming that our algorithm is given processors that are three times faster.
Resumo:
The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks including sensor networks. It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When enabling its beacon mode, the protocol makes possible real-time guarantees by using its Guaranteed Time Slot (GTS) mechanism. This paper analyzes the performance of the GTS allocation mechanism in IEEE 802.15.4. The analysis gives a full understanding of the behavior of the GTS mechanism with regards to delay and throughput metrics. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters. We then evaluate the delay bounds guaranteed by an allocation of a GTS using Network Calculus formalism. Finally, based on the analytic results, we analyze the impact of the IEEE 802.15.4 parameters on the throughput and delay bound guaranteed by a GTS allocation. The results of this work pave the way for an efficient dimensioning of an IEEE 802.15.4 cluster.
Resumo:
Decimal multiplication is an integral part of financial, commercial, and internet-based computations. A novel design for single digit decimal multiplication that reduces the critical path delay and area for an iterative multiplier is proposed in this research. The partial products are generated using single digit multipliers, and are accumulated based on a novel RPS algorithm. This design uses n single digit multipliers for an n × n multiplication. The latency for the multiplication of two n-digit Binary Coded Decimal (BCD) operands is (n + 1) cycles and a new multiplication can begin every n cycle. The accumulation of final partial products and the first iteration of partial product generation for next set of inputs are done simultaneously. This iterative decimal multiplier offers low latency and high throughput, and can be extended for decimal floating-point multiplication.
Resumo:
Se hace un balance del Proyecto TRENDS (Training Educators through Networks and Distributed Systems) implantado en Grecia, España, Francia, Italia, Portugal y Reino Unido. En el balance se presentan los objetivos del proyecto y su desarrollo en el que se incluye el modelo de formación, aspectos tecnológicos y la organización del proyecto. Así mismo se hace una contextualización del proyecto en España y se concluye subrayando la gran utilidad de esta experiencia para elaborar futuros telemáticos de más amplio alcance que beneficien la formación de las personas adultas tanto en la modalidad presencial como en la de distancia .
Resumo:
The paper presents a design for a hardware genetic algorithm which uses a pipeline of systolic arrays. These arrays have been designed using systolic synthesis techniques which involve expressing the algorithm as a set of uniform recurrence relations. The final design divorces the fitness function evaluation from the hardware and can process chromosomes of different lengths, giving the design a generic quality. The paper demonstrates the design methodology by progressively re-writing a simple genetic algorithm, expressed in C code, into a form from which systolic structures can be deduced. This paper extends previous work by introducing a simplification to a previous systolic design for the genetic algorithm. The simplification results in the removal of 2N 2 + 4N cells and reduces the time complexity by 3N + 1 cycles.