966 resultados para PSYCHIATRY, SCI


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three groups of poly(mannitol citric dicarboxylate) [p(MCD)] copolyesters were synthesized by catalyst-free melt condensation of mannitol with acids. The resulting copolyesters were designated as poly(mannitol citric succinate) [p(MCSu)], poly(mannitol citric adipate) [p(MCA)], poly(mannitol citric sebacate) [p(MCS)]. The polymers were characterized by FTIR, (1)H NMR, and DSC analysis. The synthesized p(MCD) polymers exhibit glass transition temperatures ranging from 16.5 to 58.58 degrees C. The mechanical, degradation properties, and the drug-releasing characteristics of these polymers were investigated. It was observed that the mechanical properties of the p(MCD) polymers cover a wide range with Young's modulus of the polymer varying from 12.25 to 660 MPa. Hydrolytic degradation of all polymers was investigated by incubating polymer discs in PBS and the hydrolytic degradation of p(MCD) polymers followed the order, p(MCSu) > p(MCA) > p(MCS). This was attributed to the number of -CH(2)(units in the dicarboxylic monomers. The release of model drug compounds from the p(MCD) polymer discs was also studied. POLYM. ENG. SCI., 51:2035-2043, 2011. (C) 2011 Society of Plastics Engineers

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyaniline functionalized with imidazole as strategically designed receptor group in its backbone was synthesized for copper binding. The synthesized polymer has been characterized using FTIR, NMR, and UV-Vis spectroscopic techniques. The addition of copper (II) to the polymer distinctly changes the properties such as crystallinity, molecular weight, aggregation, and electronic properties. XRD, DLS, SEM, and four-point probe techniques have been used for study of these changes. It is observed that the secondary ion generated as a result of copper coordination results in the doping of the polyaniline backbone, which enhances the conductivity by one order of magnitude. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 123: 526-534, 2012

Relevância:

10.00% 10.00%

Publicador:

Resumo:

he thermodynamic properties of the spinel Mg2SnO4 have been determined by emf measurements on the solid oxide galvanic cell,View the MathML source in the temperature range 600 to 1000°C. The Gibbs' free energy of formation of Mg2SnO4 from the component oxides can be expressed as View the MathML source,View the MathML source These values are in good agreement with the information obtained by Jackson et al. [Earth Planet. Sci. Lett.24, 203 (1974)] on the high pressure decomposition of magnesium stannate into component oxides at different temperatures. The thermodynamic data suggest that the spinel phase is entropy stabilized, and would be unstable below 207 (±25)°C at atmospheric pressure. Based on the information obtained in this study and trends in the stability of aluminate and chromite spinels, it can be deduced that the stannates of nickel and copper(II) are unstable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A methodology for evaluating the reactivity of titanium with mould materials during casting has been developed. Microhardness profiles and analysis of oxygen contamination have provided an index for evaluation of the reactivity of titanium. Microhardness profile delineates two distinct regions, one of which is characterised by a low value of hardness which is invariant with distance. The reaction products are uniformly distributed in the metal in this region. The second is characterised by a sharp decrease in microhardness with distance from the metal-mould interface. It represents a diffusion zone for solutes that dissolve into titanium from the mould. The qualitative profiles for contaminants determined by scanning electron probe microanalyser and secondary ion mass spectroscopy in the as-cast titanium were found to be similar to that of microhardness, implying that microhardness can be considered as an index of the contamination resulting from metal-mould reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gibbs’ energies of formation of Pt5La, Pt5Ce, Pt5Pr, Pt5Tb and Pt5 Tm intermetallic compounds have been determined in the temperature range 870–1100 K using the solid state cell:Ta,M + MF3 /CaF2 /Pt5 M + Pt + MF3 ,TaTaM+MF3CaF2Pt5M+Pt+MF3Ta.The reversible emf of the cell is directly related to the Gibbs’ energy of formation of the Pt5M compound. The results can be summarized by the equations:DGf° á Pt5 La ñ = - 373,150 + 6 ·60 T( ±300 )J mol - 1 DGf° á Pt5 Ce ñ = - 367,070 + 5 ·79 T( ±300 )J mol - 1 DGf° á Pt5 Pr ñ = - 370,540 + 4 ·69 T( ±300 )J mol - 1 DGf° á Pt5 Tb ñ = - 372,280 + 4 ·11 T( ±300 )J mol - 1 DGf° á Pt5 Tm ñ = - 368,230 + 4 ·89 T( ±300 )J mol - 1 Unknown control sequence '\hfill'relative to the low temperature allotropic form of the lanthanide element and solid platinum as standard states The enthalpies of formation of all the Pt5M intermetallic compounds obtained in this study are in good agreement with Miedema’s model. The experimental values are more negative than those calculated using the model. The variation of the thermodynamic properties of Pt5M compounds with atomic number of the lanthanide element is discussed in relation to valence state and molar volume.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new structured discretization of 2D space, named X-discretization, is proposed to solve bivariate population balance equations using the framework of minimal internal consistency of discretization of Chakraborty and Kumar [2007, A new framework for solution of multidimensional population balance equations. Chem. Eng. Sci. 62, 4112-4125] for breakup and aggregation of particles. The 2D space of particle constituents (internal attributes) is discretized into bins by using arbitrarily spaced constant composition radial lines and constant mass lines of slope -1. The quadrilaterals are triangulated by using straight lines pointing towards the mean composition line. The monotonicity of the new discretization makes is quite easy to implement, like a rectangular grid but with significantly reduced numerical dispersion. We use the new discretization of space to automate the expansion and contraction of the computational domain for the aggregation process, corresponding to the formation of larger particles and the disappearance of smaller particles by adding and removing the constant mass lines at the boundaries. The results show that the predictions of particle size distribution on fixed X-grid are in better agreement with the analytical solution than those obtained with the earlier techniques. The simulations carried out with expansion and/or contraction of the computational domain as population evolves show that the proposed strategy of evolving the computational domain with the aggregation process brings down the computational effort quite substantially; larger the extent of evolution, greater is the reduction in computational effort. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we report the mechanical and biocompatibility properties of injection-molded high-density polyethylene (HDPE) composites reinforced with 40 wt % ceramic filler [hydroxyapatite (HA) and/or Al2O3] and 2 wt % titanate as a coupling agent. The mechanical property measurements revealed that a combination of a maximum tensile strength of 18.7 MPa and a maximum tensile modulus of about 855 MPa could be achieved with the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites. For the same composite composition, the maximum compression strength was determined to be 71.6 MPa and the compression modulus was about 660 MPa. The fractrography study revealed the uniform distribution of ceramic fillers in the semicrystalline HDPE matrix. The cytocompatibility study with osteoblast-like SaOS2 cells confirmed extensive cell adhesion and proliferation on the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites. The cell viability analysis with the 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed a statistically significant difference between the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites and sintered HA for various culture durations of upto 7 days. The difference in cytocompatibility properties among the biocomposites is explained in terms of the difference in the protein absorption behavior. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present article demonstrates how the stiffness, hardness as well as the cellular response of bioinert high-density polyethylene (HDPE) can be significantly improved with combined addition of both bioinert and bioactive ceramic fillers. For this purpose, different amounts of hydroxyapatite and alumina, limited to a total of 40 wt %, have been incorporated in HDPE matrix. An important step in composite fabrication was to select appropriate solvent and optimal addition of coupling agent (CA). In case of chemically coupled composites, 2% Titanium IV, 2-propanolato, tris iso-octadecanoato-O was used as a CA. All the hybrid composites, except monolithic HDPE, were fabricated under optimized compression molding condition (140 degrees C, 0.75 h, 10 MPa pressure). The compression molded composites were characterized, using X-ray diffraction, Fourier transformed infrared spectroscopy, and scanning electron microscopy. Importantly, in vitro cell culture and cell viability study (MTT) using L929 fibroblast and SaOS2 osteoblast-like cells confirmed good cytocompatibility properties of the developed hybrid composites. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin films of (1-x)Pb(Mg1/3Nb2/3)O-3 - xPbTiO(3) (x = 0.1 to 0.3)(PMN-PT) were deposited on the platinum coated silicon substrate by pulsed excimer laser ablation technique. A template layer of LaSr0.5Co0.5O3 (LSCO) was deposited on platinum substrate prior to the deposition of PMN-PT thin films. The composition and the structure of the films were modulated via proper variation of the deposition parameter such as substrate temperature, laser fluence and thickness of the template layers. We observed the impact of the thickness of LSCO template layer on the orientation of the films. A room temperature dielectric constant varying from 2000 to 4500 was noted for different composition of the films. The dielectric properties of the films were studied over the frequency range of 100 Hz - 100 kHz over a wide range of temperatures. The films exhibited the relaxor- type behavior that was characterized by the frequency dispersion of the temperature of dielectric constant maxima (T-m) and also diffuse phase transition. C1 Indian Inst Sci, Mat Res Ctr, Bangalore, Karnataka 560012 India.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inverse suspension polymerization was carried out to synthesize poly(acrylic acid-co-sodium acrylate-co-acrylamide) superabsorbent polymers (SAPs) crosslinked with ethylene glycol dimethacrylate (EGDMA). The equilibrium swelling capacities of the SAPs, determined by swelling them in DI water, were found to vary with the acrylamide (AM) content. The SAPs were used to adsorb four cationic dyes (Acriflavine, Auramine-O, Azure-I and Pyronin-Y). The effect of AM content in the SAPs on the adsorption of the cationic dyes was investigated. Different initial concentrations of Azure-I were used with the same amount of the SAP to explore the effect of initial dye concentration on the adsorption. The effect of the adsorbent amount was investigated by taking different amounts of SAP with a fixed initial concentration of Acriflavine. The kinetics of the dye adsorption was modeled by a first order model and the equilibrium amount of the dye adsorbed, adsorption rate coefficients, removal efficiency and partition coefficients were determined. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Aib-(D)Ala dipeptide segment has a tendency to form both type-I'/III' and type-I/III beta-turns. The occurrence of prime turns facilitates the formation of beta-hairpin conformations, while type-I/III turns can nucleate helix formation. The octapeptide Boc-Leu-Phe-Val-Aib-(D)Ala-Leu-Phe-Val-OMe (1) has been previously shown to form a beta-hairpin in the crystalline state and in solution. The effects of sequence truncation have been examined using the model peptides Boc-Phe-Val-Aib-Xxx-Leu-Phe-NHMe (2, 6), Boc-Val-Aib-Xxx-Leu-NHMe (3, 7), and Boc-Aib-Xxx-NHMe (4, 8), where Xxx = (D)Ala, Aib. For peptides with central Aib-Aib segments, Boc-Phe-Val-Aib-Aib-Leu-Phe-NHMe (6), Boc-Val-Aib-Aib-Leu-NHMe (7), and Boc-Aib-Aib-NHMe (8) helical conformations have been established by NMR studies in both hydrogen bonding (CD(3)OH) and non-hydrogen bonding (CDCl(3)) solvents. In contrast, the corresponding hexapeptide Boc-Phe-Val-Aib-(D)Ala-Leu-Phe-Val-NHMe (2) favors helical conformations in CDCl(3) and beta-hairpin conformations in CD(3)OH. The beta-turn conformations (type-I'/III) stabilized by intramolecular 4 -> 1 hydrogen bonds are observed for the peptide Boc-Aib-(D)Ala-NHMe (4) and Boc-Aib-Aib-NIiMe (8) in crystals. The tetrapeptide Boc-Val-Aib-Aib-Leu-NHMe (7) adopts an incipient 3(10)-helical conformation stabilized by three 4 -> 1 hydrogen bonds. The peptide Boc-Val-Aib-(D)Ala-Leu-NHMe (3) adopts a novel et-turn conformation, stabilized by three intramolecular hydrogen bonds (two 4 -> 1 and one 5 -> 1). The Aib-L(D)Ala segment adopts a type-I' beta-turn conformation. The observation of an NOE between Val (1) NH <-> HNCH(3) (5) in CD(3)OH suggests, that the solid state conformation is maintained in methanol solutions. (C) 2011 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 96: 744-756, 2011.