997 resultados para PB-186
Resumo:
The isotopic composition of Nd in present-day deep waters of the central and northeastern Atlantic Ocean is thought to fingerprint mixing of North Atlantic Deep Water with Antarctic Bottom Water. The central Atlantic Romanche and Vema Fracture Zones are considered the most important pathways for deep water exchange between the western and eastern Atlantic basins today. We present new Nd isotope records of the deepwater evolution in the fracture zones obtained from ferromanganese crusts, which are inconsistent with simple water mass mixing alone prior to 3 Ma and require additional inputs from other sources. The new Pb isotope time series from the fracture zones are inexplicable by simple mixing of North Atlantic Deep Water and Antarctic Bottom Water for the entire past 33 Myr. The distinct and relatively invariable Nd and Pb isotope records of deep waters in the fracture zones appear instead to have been controlled to a large extent by contributions from Saharan dust and the Orinoco/Amazon Rivers. Thus the previously observed similarity of Nd and Pb isotope time series from the western and eastern North Atlantic basins is better explainable by direct supply of Labrador Seawater to the eastern basin via a northern pathway rather than by advection of North Atlantic Deep Water via the Romanche and Vema Fracture Zones.
Resumo:
The Byrd Glacier discontinuity us a major boundary crossing the Ross Orogen, with crystalline rocks to the north and primarily sedimentary rocks to the south. Most models for the tectonic development of the Ross Orogen in the central Transantarctic Mountains consits of two-dimensional transects across the belt, but do not adress the major longitudinal contrast at Byrd Glacier. This paper presents a tectonic model centering on the Byrd Glacier discontinuity. Rifting in the Neoproterozoic producede a crustal promontory in the craton margin to the north of Byrd Glacier. Oblique convergence of the terrane (Beardmore microcontinent) during the latest Neroproterozoic and Early Cambrian was accompanied by subduction along the craton margin of East Antarctica. New data presented herein in the support of this hypothesis are U-Pb dates of 545.7 ± 6.8 Ma and 531.0 ± 7.5 Ma on plutonic rocks from the Britannia Range, subduction stepped out, and Byrd Glacier. After docking of the terrane, subduction stepped out, and Byrd Group was deposited during the Atdabanian-Botomian across the inner margin of the terrane. Beginning in the upper Botomian, reactivation of the sutured boundaries of the terrane resulted in an outpouring of clastic sediment and folding and faulting of the Byrd Group.
Resumo:
The application of radiogenic isotopes to the study of Cenozoic circulation patterns in the South Pacific Ocean has been hampered by the fact that records from only equatorial Pacific deep water have been available. We present new Pb and Nd isotope time series for two ferromanganese crusts that grew from equatorial Pacific bottom water (D137-01, 'Nova', 7219 m water depth) and southwest Pacific deep water (63KD, 'Tasman', 1700 m water depth). The crusts were dated using 10Be/9Be ratios combined with constant Co-flux dating and yield time series for the past 38 and 23 Myr, respectively. The surface Nd and Pb isotope distributions are consistent with the present-day circulation pattern, and therefore the new records are considered suitable to reconstruct Eocene through Miocene paleoceanography for the South Pacific. The isotope time series of crusts Nova and Tasman suggest that equatorial Pacific deep water and waters from the Southern Ocean supplied the dissolved trace metals to both sites over the past 38 Myr. Changes in the isotopic composition of crust Nova are interpreted to reflect development of the Antarctic Circumpolar Current and changes in Pacific deep water circulation caused by the build up of the East Antarctic Ice Sheet. The Nd isotopic composition of the shallower water site in the southwest Pacific appears to have been more sensitive to circulation changes resulting from closure of the Indonesian seaway.
Resumo:
Fil: Jalif de Bertranou, Clara Alicia.