987 resultados para Oxidation-kinetics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic study of the kinetics of axial Ni silicidation of as-grown and oxidized Si nanowires (SiNWs) with different crystallographic orientations and core diameters ranging from ∼ 10 to 100 nm is presented. For temperatures between 300 and 440 °C the length of the total axial silicide intrusion varies with the square root of time, which provides clear evidence that the rate limiting step is diffusion of Ni through the growing silicide phase(s). A retardation of Ni-silicide formation for oxidized SiNWs is found, indicative of a stress induced lowering of the diffusion coefficients. Extrapolated growth constants indicate that the Ni flux through the silicided NW is dominated by surface diffusion, which is consistent with an inverse square root dependence of the silicide length on the NW diameter as observed for (111) orientated SiNWs. In situ TEM silicidation experiments show that NiSi(2) is the first forming phase for as-grown and oxidized SiNWs. The silicide-SiNW interface is thereby atomically abrupt and typically planar. Ni-rich silicide phases subsequently nucleate close to the Ni reservoir, which for as-grown SiNWs can lead to a complete channel break-off for prolonged silicidation due to significant volume expansion and morphological changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New atmospheric pressure flow reactor data on the oxidation of formaldehyde in the temperature range 943-995 K and over equivalence ratios from 0.013 to 36.7 are reported and discussed. A detailed mechanism assembled from previously published results produced acceptable agreement with the experimental data for the fuel-lean conditions, but failed to predict results for oxidative pyrolysis. Analysis or the very fuel-lean conditions, but failed to modelling results are principally sensitive to CH2O+HO2→HCO+H2O2 (6) and H2O2 +M→OH+OH+M (33). Whereas the specific rate of each reaction cannot be independently determined, it is found that the product k33.k6 is a well defined function of temperature: (3.4±3.0).1028 exp(-(26,800±400)/T). Inadequacies in the mechanism which may be responsible for the disagreement under fuel-rich conditions are discussed. © 1991 Combustion Institute.