909 resultados para Ovarian septum
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
Insulin-like growth factor-I (IGF-I) is involved in the regulation of ovarian follicular development and has been shown to potentiate the FSH responsiveness of granulosa cells from preantral follicles. The aim of the present study was to investigate the effect of IGF-I during preantral follicular culture on steroidogenesis, subsequent oocyte maturation, fertilization, and embryo development in mice. Preantral follicles were isolated mechanically and cultured for 12 days in a simplified culture medium supplemented with 1% fetal calf serum, recombinant human FSH, transferrin, and selenium. In these conditions, follicles were able to grow and produce oocytes that could be matured and fertilized. The first experiment analyzed the effect of different concentrations of IGF-I (0, 10, 50, or 100 ng/ml) added to the culture medium on the follicular survival, steroidogenesis, and the oocyte maturation process. The presence of IGF-I during follicular growth increased the secretion of estradiol but had no effect on the subsequent oocyte survival and maturation rates. In the second experiment, IGF-I (0 or 50 ng/ml) was added to the culture medium during follicular growth, oocyte maturation, or both, and subsequent oocyte fertilization and embryo development rates were evaluated. Oocyte fertilization rates were comparable in the presence or absence of IGF-I. However, the blastocyst development rate was enhanced after follicular culture in the presence of IGF-I. Moreover, the total cell number of the blastocysts observed after differential labeling staining was also higher when follicles were cultured or matured in the presence of IGF-I.
Resumo:
Background: The use of mechanical and enzymatic techniques to isolate preantral follicles before in-vitro culture has been previously described. The aim of this study was to assess the effect of the isolation procedure of mouse preantral follicles on their subsequent development in vitro. Methods: Follicles were isolated either mechanically or enzymatically and cultured using an individual non-spherical culture system. Follicular development and steroidogenesis, oocyte in-vitro maturation and embryo development were assessed for both groups. Results: After 12 days of culture, follicles isolated mechanically had a higher survival rate but a lower antral-like cavity formation rate than follicles isolated enzymatically. Enzymatic follicle isolation was associated with a higher production of testosterone and estradiol compared with mechanical isolation. A stronger phosphatase alkaline reaction was observed after enzymatic isolation, suggesting that follicles isolated enzymatically had more theca cells than those isolated mechanically. However, both isolation techniques resulted in similar oocyte maturation and embryo development rates. Conclusions: Enzymatic follicular isolation did not affect theca cell development. Follicular steroidogenesis was enhanced after enzymatic isolation but the developmental capacity of oocytes was comparable to that obtained after mechanical isolation.
Resumo:
Background: Anti-Müllerian hormone (AMH), secreted by the granulosa cells of preantral and small antral follicles, has been described as a potential marker of the ovarian reserve. The aim of this prospective study is to investigate the variations of AMH during the menstrual cycle in a young selected population of normo-ovulatory women and to analyse the correlation with other cyclic hormones. Methods: Twenty healthy volunteers from 19 to 35 years old, with regular menstrual cycles (26-31 days), normal ovulation (day 10-16), normal hormonal profile and normal body mass index (18-26 kg/m2) were recruited. AMH, inhibin B, LH, FSH, estradiol and progesterone were measured on days 3, 7, 10, 11, 12, 13, 14, 15, 16, 18, 21 and 25 of a spontaneous cycle. Results: AMH serum levels, either expressed by cycleday or aligned according to the ovulation day, did not show any significant variations during the menstrual cycle. Conclusions: No significant fluctuation of the AMH level during the menstrual cycle was observed. Therefore, this hormone is particularly interesting for clinical evaluation of the ovarian reserve as it may be used at any time during the cycle. © The Author 2007.
Resumo:
Technological advances in genotyping have given rise to hypothesis-based association studies of increasing scope. As a result, the scientific hypotheses addressed by these studies have become more complex and more difficult to address using existing analytic methodologies. Obstacles to analysis include inference in the face of multiple comparisons, complications arising from correlations among the SNPs (single nucleotide polymorphisms), choice of their genetic parametrization and missing data. In this paper we present an efficient Bayesian model search strategy that searches over the space of genetic markers and their genetic parametrization. The resulting method for Multilevel Inference of SNP Associations, MISA, allows computation of multilevel posterior probabilities and Bayes factors at the global, gene and SNP level, with the prior distribution on SNP inclusion in the model providing an intrinsic multiplicity correction. We use simulated data sets to characterize MISA's statistical power, and show that MISA has higher power to detect association than standard procedures. Using data from the North Carolina Ovarian Cancer Study (NCOCS), MISA identifies variants that were not identified by standard methods and have been externally "validated" in independent studies. We examine sensitivity of the NCOCS results to prior choice and method for imputing missing data. MISA is available in an R package on CRAN.
Resumo:
BACKGROUND: Genetic association studies are conducted to discover genetic loci that contribute to an inherited trait, identify the variants behind these associations and ascertain their functional role in determining the phenotype. To date, functional annotations of the genetic variants have rarely played more than an indirect role in assessing evidence for association. Here, we demonstrate how these data can be systematically integrated into an association study's analysis plan. RESULTS: We developed a Bayesian statistical model for the prior probability of phenotype-genotype association that incorporates data from past association studies and publicly available functional annotation data regarding the susceptibility variants under study. The model takes the form of a binary regression of association status on a set of annotation variables whose coefficients were estimated through an analysis of associated SNPs in the GWAS Catalog (GC). The functional predictors examined included measures that have been demonstrated to correlate with the association status of SNPs in the GC and some whose utility in this regard is speculative: summaries of the UCSC Human Genome Browser ENCODE super-track data, dbSNP function class, sequence conservation summaries, proximity to genomic variants in the Database of Genomic Variants and known regulatory elements in the Open Regulatory Annotation database, PolyPhen-2 probabilities and RegulomeDB categories. Because we expected that only a fraction of the annotations would contribute to predicting association, we employed a penalized likelihood method to reduce the impact of non-informative predictors and evaluated the model's ability to predict GC SNPs not used to construct the model. We show that the functional data alone are predictive of a SNP's presence in the GC. Further, using data from a genome-wide study of ovarian cancer, we demonstrate that their use as prior data when testing for association is practical at the genome-wide scale and improves power to detect associations. CONCLUSIONS: We show how diverse functional annotations can be efficiently combined to create 'functional signatures' that predict the a priori odds of a variant's association to a trait and how these signatures can be integrated into a standard genome-wide-scale association analysis, resulting in improved power to detect truly associated variants.
Resumo:
In sexually reproducing animals, male and female reproductive strategies often conflict. In some species, males use aggression to overcome female choice, but debate persists over the extent to which this strategy is successful. Previous studies of male aggression toward females among wild chimpanzees have yielded contradictory results about the relationship between aggression and mating behavior. Critically, however, copulation frequency in primates is not always predictive of reproductive success. We analyzed a 17-year sample of behavioral and genetic data from the Kasekela chimpanzee (Pan troglodytes schweinfurthii) community in Gombe National Park, Tanzania, to test the hypothesis that male aggression toward females increases male reproductive success. We examined the effect of male aggression toward females during ovarian cycling, including periods when the females were sexually receptive (swollen) and periods when they were not. We found that, after controlling for confounding factors, male aggression during a female's swollen periods was positively correlated with copulation frequency. However, aggression toward swollen females was not predictive of paternity. Instead, aggression by high-ranking males toward females during their nonswollen periods was positively associated with likelihood of paternity. This indicates that long-term patterns of intimidation allow high-ranking males to increase their reproductive success, supporting the sexual coercion hypothesis. To our knowledge, this is the first study to present genetic evidence of sexual coercion as an adaptive strategy in a social mammal.
Resumo:
Four pigs, three with focal infarctions in the apical intraventricular septum (IVS) and/or left ventricular free wall (LVFW), were imaged with an intracardiac echocardiography (ICE) transducer. Custom beam sequences were used to excite the myocardium with focused acoustic radiation force (ARF) impulses and image the subsequent tissue response. Tissue displacement in response to the ARF excitation was calculated with a phase-based estimator, and transverse wave magnitude and velocity were each estimated at every depth. The excitation sequence was repeated rapidly, either in the same location to generate 40 Hz M-modes at a single steering angle, or with a modulated steering angle to synthesize 2-D displacement magnitude and shear wave velocity images at 17 points in the cardiac cycle. Both types of images were acquired from various views in the right and left ventricles, in and out of infarcted regions. In all animals, acoustic radiation force impulse (ARFI) and shear wave elasticity imaging (SWEI) estimates indicated diastolic relaxation and systolic contraction in noninfarcted tissues. The M-mode sequences showed high beat-to-beat spatio-temporal repeatability of the measurements for each imaging plane. In views of noninfarcted tissue in the diseased animals, no significant elastic remodeling was indicated when compared with the control. Where available, views of infarcted tissue were compared with similar views from the control animal. In views of the LVFW, the infarcted tissue presented as stiff and non-contractile compared with the control. In a view of the IVS, no significant difference was seen between infarcted and healthy tissue, whereas in another view, a heterogeneous infarction was seen to be presenting itself as non-contractile in systole.
Resumo:
Anti-mullerian hormone, also called AMH, belongs to the large family of transforming growth factor P. Its role in the sexual differentiation of male fetus is now well known. Recently, AMH has been demonstrated to play an important role in the ovarian function. In fact, AMH seems to regulate the kinetics of follicular development, inhibiting the follicular recruitment and the follicular growth. Thus, this intra-gonadic cybernin could be a decisive determinant of the rapidity of follicular pool exhaustion. Today, some experimental data from the literature suggest that AMH could be a reliable marker of ovarian reserve. This review summarizes the present knowledge about AMH and its role in physiology but also in ovarian pathology.
Resumo:
PURPOSE: Risk-stratified guidelines can improve quality of care and cost-effectiveness, but their uptake in primary care has been limited. MeTree, a Web-based, patient-facing risk-assessment and clinical decision support tool, is designed to facilitate uptake of risk-stratified guidelines. METHODS: A hybrid implementation-effectiveness trial of three clinics (two intervention, one control). PARTICIPANTS: consentable nonadopted adults with upcoming appointments. PRIMARY OUTCOME: agreement between patient risk level and risk management for those meeting evidence-based criteria for increased-risk risk-management strategies (increased risk) and those who do not (average risk) before MeTree and after. MEASURES: chart abstraction was used to identify risk management related to colon, breast, and ovarian cancer, hereditary cancer, and thrombosis. RESULTS: Participants = 488, female = 284 (58.2%), white = 411 (85.7%), mean age = 58.7 (SD = 12.3). Agreement between risk management and risk level for all conditions for each participant, except for colon cancer, which was limited to those <50 years of age, was (i) 1.1% (N = 2/174) for the increased-risk group before MeTree and 16.1% (N = 28/174) after and (ii) 99.2% (N = 2,125/2,142) for the average-risk group before MeTree and 99.5% (N = 2,131/2,142) after. Of those receiving increased-risk risk-management strategies at baseline, 10.5% (N = 2/19) met criteria for increased risk. After MeTree, 80.7% (N = 46/57) met criteria. CONCLUSION: MeTree integration into primary care can improve uptake of risk-stratified guidelines and potentially reduce "overuse" and "underuse" of increased-risk services.Genet Med 18 10, 1020-1028.
Resumo:
Lasioglossum malachurum, a bee species common across much of Europe, is obligately eusocial across its range but exhibits clear geographic variation in demography and social behaviour. This variation suggests that social interactions between queens and workers, opportunities for worker oviposition, and patterns of relatedness among nest mates may vary considerably, both within and among regions. In this study, we used three microsatellite loci with 12–18 alleles each to examine the sociogenetic structure of colonies from a population at Agios Nikolaos Monemvasias in southern Greece. These analyses reveal that the majority of colonies exhibit classical eusocial colony structure in which a single queen mated to a single male monopolizes oviposition. Nevertheless, we also detect low rates of multiqueen nest founding, occasional caste switching by worker-destined females, and worker oviposition of both gyne and male-producing eggs in the final brood. Previous evidence that the majority of workers show some ovarian development and a minority (17%) have at least one large oocyte contrasts with the observation that only 2–3% of gynes and males (the so-called reproductive brood) are produced by workers. An evaluation of the parameters of Hamilton's Rule suggests that queens benefit greatly from the help provided by workers but that workers achieve greater fitness by provisioning and laying their own eggs rather than by tending to the queen's eggs. This conflict of interest between the queen and her workers suggests that the discrepancy between potential and achieved worker oviposition is due to queen interference. Comparison of relatedness and maternity patterns in the Agios Nikolaos Monemvasias population with those from a northern population near Tübingen, Germany, points to a north–south cline of increasingly effective queen control of worker behaviour.
Resumo:
BRCA1 is a tumour suppressor gene implicated in the predisposition to early onset breast and ovarian cancer. We have generated cell lines with inducible expression of BRCA1 to evaluate its role in mediating the cellular response to various chemotherapeutic drugs commonly used in the treatment of breast and ovarian cancer. Induction of BRCA1 in the presence of Taxol and Vincristine resulted in a dramatic increase in cell death; an effect that was preceded by an acute arrest at the G2/M phase of the cell cycle and which correlated with BRCA1 mediated induction of GADD45. A proportion of the arrested cells were blocked in mitosis suggesting activation of both a G2 and a mitotic spindle checkpoint. In contrast, no specific interaction was observed between BRCA1 induction and treatment of cells with a range of DNA damaging agents including Cisplatin and Adriamycin. Inducible expression of GADD45 in the presence of Taxol induced both G2 and mitotic arrest in these cells consistent with a role for GADD45 in contributing to these effects. Our results support a role for both BRCA1 and GADD45 in selectively regulating a G2/M checkpoint in response to antimicrotubule agents and raise the possibility that their expression levels in cells may contribute to the toxicity observed with these compounds.
Resumo:
BRCA1 encodes a tumor suppressor gene that is mutated in the germ line of women with a genetic predisposition to breast and ovarian cancer. BRCA1 has been implicated in a number of important cellular functions including DNA damage repair, transcriptional regulation, cell cycle control, and ubiquitination. Using an Affymetrix U95A microarray, IRF-7 was identified as a BRCA1 transcriptional target and was also shown to be synergistically up-regulated by BRCA1 specifically in the presence of IFN-gamma, coincident with the synergistic induction of apoptosis. We show that BRCA1, signal transducer and activator of transcription (STAT)-1, and STAT2 are all required for the induction of IRF-7 following stimulation with IFN-gamma. We also show that the induction of IRF-7 by BRCA1 and IFN-gamma is dependent on the type I IFNs, IFN-alpha and IFN-beta. We show that BRCA1 is required for the up-regulation of STAT1, STAT2, and the type I IFNs in response to IFN-gamma. We show that BRCA1 is localized at the promoters of the molecules involved in type I IFN signaling leading to their up-regulation. Blocking this intermediary type I IFN step using specific antisera shows the requirement for IFN-alpha and IFN-beta in the induction of IRF-7 and apoptosis. Finally, we outline a mechanism for the BRCA1/IFN-gamma regulation of target genes involved in the innate immune response, which is dependent on type I IFN signaling.
Resumo:
Anillin is an actin-binding protein that can bind septins and is a component of the cytokinetic ring. We assessed the anillin expression in 7,579 human tissue samples and cell lines by DNA micro-array analysis. Anillin is expressed ubiquitously but with variable levels of expression, being highest in the central nervous system. The median level of anillin mRNA expression was higher in tumors than normal tissues (median fold increase 2.58; 95% confidence intervals, 2.19-5.68, P < 0.0001) except in the central nervous system where anillin in RNA levels were lower in tumors. We developed a sensitive reverse transcription-PCR strategy to show that anillin mRNA is expressed in cell lines and in cDNA panels derived from fetal and adult tissues, thus validating the microarray data. We compared anillin with Ki67 in RNA expression and found a significant linear relationship between anillin and Ki67 mRNA expression (Spearmann r similar to 0.6, P < 0.0001). Anillin mRNA expression was analyzed during tumor progression in breast, ovarian, kidney, colorectal, hepatic, lung, endometrial, and pancreatic tumors and in all tissues there was progressive, increase in anillin mRNA expression from normal to benign to malignant to metastatic disease. Finally, we used anti-anillin sera and found nuclear anillin immuncireactivity to be widespread in normal tissues, often not correlating with proliferative compartments. These data provide insight into the existence of non proliferation-associated activities of anillin and roles in interphase nuclei. Thus, anillin is overexpressed in diverse common human tumors, but not simply as a consequence of being a proliferation marker. Anillin may have potential as a novel biomarker.
Resumo:
BRCA1 (breast-cancer susceptibility gene 1) is a tumour suppressor gene that is mutated in the germline of women with a genetic predisposition to breast and ovarian cancer. In this review, we examine the role played by BRCA1 in mediating the cellular response to stress. We review the role played by BRCA1 in detecting and signalling the presence of DNA damage, particularly double-strand DNA breaks, and look at the evidence to support a role for BRCA1 in regulating stress response pathways such as the c-Jun N-terminal kinase/stress-activated protein kinase pathway. in addition, we examine the role played by BRCA1 in mediating both cell-cycle arrest and apoptosis following different types of cellular insult, and how this may be modulated by the presence or absence of associated proteins such as p53. Finally, we explore the possibility that many of the functions associated with BRCA1 may be based on transcriptional regulation of key downstream genes that have been implicated in the regulation of these specific cellular pathways.