977 resultados para Organic Soils
Resumo:
Metal nanoparticle photocatalysts have attracted recent interest due to their strong absorption of visible and ultraviolet light. The energy absorbed by the metal conduction electrons and the intense electric fields in close proximity, created by the localized surface plasmon resonance effect, makes the crucial contribution of activating the molecules on the metal nanoparticles which facilitates chemical transformation. There are now many examples of successful reactions catalyzed by supported nanoparticles of pure metals and of metal alloys driven by light at ambient or moderate temperatures. These examples demonstrate these materials are a novel group of efficient photocatalysts for converting solar energy to chemical energy and that the mechanisms are distinct from those of semiconductor photocatalysts. We present here an overview of recent research on direct photocatalysis of supported metal nanoparticles for organic synthesis under light irradiation and discuss the significant reaction mechanisms that occur through light irradiation.
Resumo:
Three inorganic-organic hybrid framework cadmium thiosulfate phases have been investigated for adsorption and photodegradation of organic dye molecules. Different classes of organic dyes, viz., triaryl methane, azo, xanthene, anthraquinone, have been studied. The anionic dyes with sulfonate groups appear to readily adsorb on the cadmium thiosulfate compounds in an aqueous medium. The adsorption of the dye molecules, however, does not create any structural changes on the cadmium thiosulfate compounds, though weak electronic interactions have been observed. The adsorbed dyes have been desorbed partially in an alcoholic medium, suggesting possible applications in scavenging specific anionic dyes from the aqueous solutions. Langmuir adsorption/desorption isotherms have been used to model this behavior. UV-assisted (lambda(max) = 365 nm) photocatalytic decomposition studies on the cationic dyes indicate reasonable activity comparable with that of Degussa P-25 (TiO2) catalyst. Sunlight assisted photocatalyti studies have been carried out in detail employing hybrid framework compounds. The Langmuir-Hinshelwood kinetics model, employed to follow the degradation profile of the organic dyes, indicates that the photocatalytic degradation follows the order: triaryl methane > azo > xanthene.
Resumo:
Eight new open-framework inorganic-organic hybrid compounds based on indium have been synthesized employing hydrothermal methods. All of the compounds have InO6, C2O4, and HPO3/HPO4/SO4 units connected to form structures of different dimensionality Thus, the compounds have zero- (I), two- (II, III, IV, V, VII, and VIII), and three-dimensionally (VI) extended networks. The formation of the first zero-dimensional hybrid compound is noteworthy In addition, concomitant polymorphic structures have been observed in the present study. The molecular compound, I, was found to be reactive, and the transformation studies in the presence of a base (pyridine) give rise to the polymorphic structures of II and III, while the addition of an acid (H3PO3) gives rise to a new indium phosphite with a pillared layer structure (T1). Preliminary density functional theory calculations suggest that the stabilities of the polymorphs are different, with one of the forms (II) being preferred over the other, which is consistent with the observed experimental behavior. The oxalate units perform more than one role in the present structures. Thus, the oxalate units connect two In centers to satisfy the coordination requirements as well as to achieve charge balance in compounds II, IV, and VI. The terminal oxalate units observed in compounds I, IV, and V suggest the possibility of intermediate structures. Both in-plane and out-of-plane connectivity of the oxalate units were observed in compound VI. The 31 compounds have been characterized by powder X-ray diffraction, IR spectroscopy, thermogravimetric analysis, and P-31 NMR studies.
Resumo:
The effect of solvent on chemical reactivity has generally been explained on the basis of the dielectric constant and viscosity. However a number of spectroscopic studies, including UV-VIS, IR and Raman, has led to numerous empirical parameters to define solvent effect based on either solvating ability or polarity scale. These parameters include solvent polarizability, dipolarity, Lewis acidity and Lewis basicity, E-T(30), pi*, alpha, beta etc. However, from a structural point of view, we can separate solvation as static and dynamic processes. The static solvation basically relates to stabilization of the molecular structure by the solvent to attain the equilibrium structure, both in the intermediate and ground state. Dynamic solvation relates to solvent reorganization-induced dynamics prior to the structural reorganization to reach the equilibrium state. In this paper, we present (a) structural distortions induced by the solvent due to preferential solvation of the triplet excited state, and (b) the importance of dynamic solvation induced by vibronic coupling (pseudo-Jahn-Teller coupling). The examples include the effect of solvent on structure and reactivity of excited states of 2,2,2-trifluoroacetophenone (TFA). Based on the comparison of time resolved resonance Raman (TR3) data of TFA and other substituted acetophenone systems, it was found that change in solvent polarity indeed results in electronic state switching and structural changes in the excited state, which explains the trend in reactivity. Further, a TR3 study of fluoranil (FA) in the triplet excited state in solvents of varying polarities indicates that the structure of FA in the triplet excited state is determined by vibronic coupling effects and thus distorted structure. These experimental results have been well supported by density functional theoretical computational studies.
Resumo:
Peptide NH chemical shifts and their temperature dependences have been monitored as a function of concentration for the decapeptide, Boc-Aib-Pro-Val-Aib-Val-Ala-Aib-Ala-Aib-Aib-OMe in CDCl3 (0.001-0.06M) and (CD3)2SO (0.001-0.03M). The chemical shifts and temperature coefficients for all nine NH groups show no significant concentration dependence in (CD3)2SO. Seven NH groups yield low values of temperature coefficients over the entire range, while one yields an intermediate value. In CDCl3, the Aib(1) NH group shows a large concentration dependence of both chemical shift and temperature coefficient, in contrast to the other eight NH groups. The data suggest that in (CD3)2SO, the peptide adopts a 310 helical conformation and is monomeric over the entire concentration range. In CDCl3, the 310 helical peptide associates at a concentration of 0.01M, with the Aib(1) NH involved in an intermolecular hydrogen bond. Association does not disrupt the intramolecular hydrogen-bonding pattern in the decapeptide.
Resumo:
The article describes the synthesis, structure and magnetic investigations of a series of metal-organic framework compounds formed with Mn+2 and Ni+2 ions. The structures, determined using the single crystal X-ray diffraction, indicated that the structures possess two- and three-dimensional structures with magnetically active dimers, tetramers, chains, two-dimensional layers connected by polycarboxylic acids. These compounds provide good examples for the investigations of magnetic behaviour. Magnetic studies have been carried out using SQUID magnetometer in the range of 2-300 K and the behaviour indicates a predominant anti-ferromagnetic interactions, which appears to differ based on the M-O-C-O-M and/or the M-O-M (M = metal ions) linkages. Thus, compounds with carboxylate (Mn-O-C-O-Mn) connected ones, [C3N2H [Mn(H2O)''C6H3(COO)(3)''], I, [''Mn(H2O (3)''aEuroeC(12)H(8)O(COO)(2)'']center dot H2O, II, [''Mn(H2O)''aEuroeC(12)H(8)O(COO)(2)''], III, show simple anti-ferromagnetic behaviour. The compounds with Mn-O/OH-Mn connected dimer and tetramer units in [NaMn''C6H3(COO)(3)''], IV, [Mn-2(A mu(3)-OH) (H2O)(2)''C6H3(COO)(3)'']center dot 2H(2)O, V, show canted-antiferromagnetic and anti-ferromagnetic behaviour, respectively. The presence of infinite one-dimensional -Ni-OH-Ni- chains in the compound, [Ni-2(H2O)(A mu(3)-OH)(2)(C8H5NO4], VI, gives rise to ferromagnet-like behaviour at low temperatures. The compounds, [Mn-3''C6H3(COO)(3)''(2)], VII and [''Mn(OH)''(2)''C12H8O(COO)(2)''], VIII, have two-dimensional infinite -Mn-O/OH-Mn- layers with triangular magnetic lattices, which resemble the Kagome and brucite-like layer. The magnetic studies indicated canted-antiferromagnetic behaviour in both the cases. Variable temperature EPR and theoretical magnetic modelling studies have been carried out on selected compounds to probe the nature of the magnetic species and their interactions with them.
Resumo:
Three-dimensional (3D) hierarchical nanoscale architectures comprised of building blocks, with specifically engineered morphologies, are expected to play important roles in the fabrication of 'next generation' microelectronic and optoelectronic devices due to their high surface-to-volume ratio as well as opto-electronic properties. Herein, a series of well-defined 3D hierarchical rutile TiO2 architectures (HRT) were successfully prepared using a facile hydrothermal method without any surfactant or template, simply by changing the concentration of hydrochloric acid used in the synthesis. The production of these materials provides, to the best of our knowledge, the first identified example of a ledgewise growth mechanism in a rutile TiO2 structure. Also for the first time, a Dye-sensitized Solar Cell (DSC) combining a HRT is reported in conjunction with a high-extinction-coefficient metal-free organic sensitizer (D149), achieving a conversion efficiency of 5.5%, which is superior to ones employing P25 (4.5%), comparable to state-of-the-art commercial transparent titania anatase paste (5.8%). Further to this, an overall conversion efficiency 8.6% was achieved when HRT was used as the light scattering layer, a considerable improvement over the commercial transparent/reflector titania anatase paste (7.6%), a significantly smaller gap in performance than has been seen previously.
Resumo:
Accurate characterization and reporting of organic photovoltaic (OPV) device performance remains one of the important challenges in the field. The large spread among the efficiencies of devices with the same structure reported by different groups is significantly caused by different procedures and equipment used during testing. The presented article addresses this issue by offering a new method of device testing using “suitcase sample” approach combined with outdoor testing that limits the diversity of the equipment, and a strict measurement protocol. A round robin outdoor characterization of roll-to-roll coated OPV cells and modules conducted among 46 laboratories worldwide is presented, where the samples and the testing equipment were integrated in a compact suitcase that served both as a sample transportation tool and as a holder and test equipment during testing. In addition, an internet based coordination was used via plasticphotovoltaics.org that allowed fast and efficient communication among participants and provided a controlled reporting format for the results that eased the analysis of the data. The reported deviations among the laboratories were limited to 5% when compared to the Si reference device integrated in the suitcase and were up to 8% when calculated using the local irradiance data. Therefore, this method offers a fast, cheap and efficient tool for sample sharing and testing that allows conducting outdoor measurements of OPV devices in a reproducible manner.
Resumo:
The conformation, organization, and phase transitions of alkyl chains in organic-inorganic hybrids based on the double pervoskite-slab lead iodides, (CH3NH3)(CH3(CH2)(n)NH3)(2)Pb2I7 (n = 11, 13, 15, 17) have been investigated by X-ray diffraction, calorimetry, and infrared vibrational spectroscopy. In these hybrid solids, double pervoskite (CH3NH3)Pb2I7 slabs are interleaved with alkyl ammonium chains with the anchored alkyl chains arranged as tilted bilayers and adopting a planar all-trans conformation at room temperature. The (CH3NH3)(CH3(CH2)(n)NH3)(2)Pb2I7 compounds exhibit a single reversible phase transition above room temperature with the associated enthalpy change varying linearly with alkyl chain length. This transition corresponds to the melting in two-dimensions of the alkyl chains of the anchored bilayer and is characterized by increased conformational disorder of the methylene units of the chain and loss of tilt angle coherence leading to an increase in the interslab spacing. By monitoring features in the infrared spectra that are characteristic of the global conformation of the alkyl chains, a quantitative relation between conformational disorder and melting of the anchored bilayer is established. It is found that, irrespective of the alkyl chain length, melting occurs when at least 60% of the chains in the anchored bilayer of (CH3NH3)(CH3(CH2)(n)NH3)(2)Pb2I7 have one or more gauche defects. This concentration is determined by the underlying lattice to which the alkyl chains are anchored.
Resumo:
A novel synthesis of inorganic-organic hybrid films containing well dispersed and almost uniform size Ag nanoparticles in agar-agar matrix has been reported. The films are found to be highly stable for more than a year. The colloidal particles of Ag can be obtained in large quantities in the form of a film or in the gel form when dispersed in agar-agar or by dissolving in a suitable solvent as solution. Characterization has been done by UV-visible spectroscopy and TEM. The hybrid may be of interest to study third-order non-linear susceptibility.
Resumo:
The present study examines the shrinkage behaviour of residually derived black cotton (BC) soil and red soil compacted specimens that were subjected to air-drying from the swollen state. The soil specimens were compacted at varying dry density and moisture contents to simulate varied field conditions. The void ratio and moisture content of the swollen specimens were monitored during the drying process and relationship between them is analyzed. Shrinkage is represented as reduction in void ratio with decrease in water content of soil specimens. It is found to occur in three distinct stages. Total shrinkage magnitude depends on the type of clay mineral present. Variation in compaction conditions effect marginally total shrinkage magnitudes of BC soil specimens but have relatively more effect on red soil specimens. A linear relation is obtained between total shrinkage magnitude and volumetric water content of soil specimens in swollen state and can be used to predict the shrinkage magnitude of soils.
Resumo:
In this paper an approach for obtaining depth and section modulus of the cantilever sheet pile wall using inverse reliability method is described. The proposed procedure employs inverse first order reliability method to obtain the design penetration depth and section modulus of the steel sheet pile wall in order that the reliability of the wall against failure modes must meet a desired level of safety. Sensitivity analysis is conducted to assess the effect of uncertainties in design parameters on the reliability of cantilever sheet pile walls. The analysis is performed by treating back fill soil properties, depth of the water table from the top of the sheet pile wall, yield strength of steel and section modulus of steel pile as random variables. Two limit states, viz., rotational and flexural failure of sheet pile wall are considered. The results using this approach are used to develop a set of reliability based design charts for different coefficients of variation of friction angle of the backfill (5%, 10% and 15%). System reliability considerations in terms of series and parallel systems are also studied.
Resumo:
Novel chromogenic thiourea based sensors 4,4'-bis-[3-(4-nitrophenyl) thiourea] diphenyl ether 1 and 4,4'-bis-[3-(4-nitrophenyl) thiourea] diphenyl methane 2 having nitrophenyl group as signaling unit have been synthesized and characterized by spectroscopic techniques and X-ray crystallography. The both sensors show visual detection, UV-vis and NMR spectral changes in presence of fluoride and cyanide anions in organic solvent as well as in aqueous medium. The absorption spectra indicated the formation of complex between host and guest is in 1:2 stoichiometric ratios. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Although hundreds of thousands of organic products are traded on a daily basis, it is less known how imported organic products are evaluated by consumers in an importing country. The paper analyzes Japanese wine point of sale (POS) data to examine whether consumers differentiate between local and imported organic products. The results of our hedonic analyses show that the premium for imported organic red (white) wines is about 42.996 % (8.872 %) while that for domestic red (white) organic wines is about 6.440 % (1.214 %), implying that Japanese consumers pay higher premiums for imported organic agricultural products than for those produced in Japan.