989 resultados para Orbit
Resumo:
In this paper, we have investigated a region of direct stable orbits around the Moon, whose stability is related to the H2 Family of periodic orbits and to the quasi-periodic orbits that oscillate around them. The stability criteria adopted was that the path did not escape from the Moon during an integration period of 1000 days (remaining with negative two-body Moon-probe orbital energy during this period). Considering the three-dimensional four-body Sun-Earth-Moon-probe problem, we investigated the evolution of the size of the stability region, taking into account the eccentricity of the Earth's orbit, the eccentricity and inclination of the Moon's orbit, and the solar radiation pressure on the probe. We also investigated the evolution of the region's size and its location by varying the inclination of the probe's initial osculating orbit relative to the Moon's orbital plane between 0 degrees and 180 degrees. The size of the stability region diminishes; nevertheless, it remains significant for 0 <= i <= 25 degrees and 35 degrees <= i <= 45 degrees. The orbits of this region could be useful for missions by space vehicles that must remain in orbit around the Moon for periods of up to 1000 days, requiring low maintenance costs. (c) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
In the present work, we expanded the study done by Solorzanol(1) including the eccentricity of the perturbing body. The assumptions used to develop the single-averaged analytical model are the same ones of the restricted elliptic three-body problem. The disturbing function was expanded in Legendre polynomials up to fourth-order. After that, the equations of motion are obtained from the planetary equations and we performed a set of numerical simulations. Different initial eccentricities for the perturbing and perturbed body are considered. The results obtained perform an analysis of the stability of a near-circular orbits and investigate under which conditions this orbit remain near-circular.
Resumo:
The magnetic-field and confinement effects on the Land, factor in AlxGa1-xAs parabolic quantum wells under magnetic fields applied parallel or perpendicular to the growth direction are theoretically studied. Calculations are performed in the limit of low temperatures and low electron density in the heterostructure. The g factor is obtained by taking into account the effects of non-parabolicity and anisotropy of the conduction band through the 2 x 2 Ogg-McCombe Hamiltonian, and by including the cubic Dresselhaus spin-orbit term. A simple formula describing the magnetic-field dependence of the effective Land, factor is analytically derived by using the Rayleigh-Schrodinger perturbation theory, and it is found in good agreement with previous experimental studies devoted to understand the behavior of the g factor, as a function of an applied magnetic field, in semiconductor heterostructures. Present numerical results for the effective Land, factor are shown as functions of the quantum-well parameters and magnetic-field strength, and compared with available experimental measurements.
Resumo:
The information on the project being developed in Brazil for a flight to binary or triple near-Earth asteroid is presented. The project plans to launch a spacecraft into an orbit around the asteroid and to study the asteroid and its satellite within six months. Main attention is concentrated on the analysis of trajectories of flight to asteroids with both impulsive and low thrust in the period 2013-2020. For comparison, the characteristics of flights to the (45) Eugenia triple asteroid of the Main Belt are also given.
Resumo:
The anisotropy of the effective Lande factor in Al(x)Gal(1-x)As parabolic quantum wells under magnetic fields is theoretically investigated. The non-parabolicity and anisotropy of the conduction band are taken into account through the Ogg-McCombe Hamiltonian together with the cubic Dresselhaus spin-orbit term. The calculated effective g factor is larger when the magnetic field is applied along the growth direction. As the well widens, its anisotropy increases sharply and then decreases slowly. For the considered field strengths, the anisotropy is maximum for a well width similar to 50 angstrom. Moreover, this anisotropy increases with the field strength and the maximum value of the aluminum concentration within the quantum well. (C) 2010 Elsevier B.V. All rights reserved.
Strategies for plane change of Earth orbits using lunar gravity and derived trajectories of family G
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Five species of smooth-hound sharks genus Mustelus (Family Triakidae) are know in the western South Atlantic, as follows: Mustelus canis (Mitchell 1815); Mustelus fasciatus (Garman 1913); Mustelus higmani Springer & Lowe 1963; Mustelus norrisi Springer 1939; and Mustelus schmitti Springer 1939. In the present paper, new data on the anatomy, morphometrics and meristic characters are given. Taxonomic aspects and comparison between the species are discussed. Most general body morphologic measurements and proportions are useless as a tool for species identification, since many of them show remarkable intraspecific variations. Head proportions and structures related seem to be a more adequate procedure to identify the species of Mustelus. The labial folds proportions, internasal distance and orbit diameter were the most useful character to separate the western South Atlantic species. The buccopharingeal pattern of denticles as well as tooth counts not was useful to distinguish the Mustelus species from western South Atlantic adequately, due great intraspecific variation.
Resumo:
Using the coadjoint orbit method we derive a geometric WZWN action based on the extended two-loop Kac-Moody algebra. We show that under a hamiltonian reduction procedure, which respects conformal invariance, we obtain a hierarchy of Toda type field theories, which contain as submodels the Toda molecule and periodic Toda lattice theories. We also discuss the classical r-matrix and integrability properties.
Resumo:
We study the interaction of resonances with the same order in families of integrable Hamiltonian systems. This can occur when the unperturbed Hamiltonian is at least cubic in the actions. An integrable perturbation coupling the action-angle variables leads to the disappearance of an island through the coalescence of stable and unstable periodic orbits and originates a complex orbit plus an isolated cubic resonance. The chaotic layer that appears when a general term is added to the Hamiltonian survives even after the disappearance of the unstable periodic orbit. © 1992.
Resumo:
It is shown that the affine Toda models (AT) constitute a gauge fixed version of the conformal affine Toda model (CAT). This result enables one to map every solution of the AT models into an infinite number of solutions of the corresponding CAT models, each one associated to a point of the orbit of the conformal group. The Hirota τ-functions are introduced and soliton solutions for the AT and CAT models associated to SL̂ (r+1) and SP̂ (r) are constructed.
Resumo:
The Birkhoff-Gustavson normal form is employed to study separately chaos and resonances in a system with two degrees of freedom. In the integrable regime, tunnelling effects are appreciable when the nearest level spacings show oscillations. Tunnelling among states in the libration and rotation tori regions is also observed. The regularity of avoided crossings due to tunnelling indicates a collective effect and is associated with an isolated resonance. The spectral fluctuations also show a strong level correlation. The Husimi distribution, on the other hand, is insensitive to avoided crossings. An integrable approximation to the overlap of resonances is obtained and a theoretical description is given for an isolated cubic resonance plus a complex orbit. In the non-integrable regime chaos is stronger after overlapping and preferentially at low energies.
Resumo:
We consider the Hamiltonian reduction of the two-loop Wess-Zumino-Novikov-Witten model (WZNW) based on an untwisted affine Kac-Moody algebra script Ĝ. The resulting reduced models, called Generalized Non-Abelian Conformal Affine Toda (G-CAT), are conformally invariant and a wide class of them possesses soliton solutions; these models constitute non-Abelian generalizations of the conformal affine Toda models. Their general solution is constructed by the Leznov-Saveliev method. Moreover, the dressing transformations leading to the solutions in the orbit of the vacuum are considered in detail, as well as the τ-functions, which are defined for any integrable highest weight representation of script Ĝ, irrespectively of its particular realization. When the conformal symmetry is spontaneously broken, the G-CAT model becomes a generalized affine Toda model, whose soliton solutions are constructed. Their masses are obtained exploring the spontaneous breakdown of the conformal symmetry, and their relation to the fundamental particle masses is discussed. We also introduce what we call the two-loop Virasoro algebra, describing extended symmetries of the two-loop WZNW models.