881 resultados para Optically pumped


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spin coating polymer blend thin films provides a method to produce multiphase functional layers of high uniformity covering large surface areas. Applications for such layers include photovoltaics and light-emitting diodes where performance relies upon the nanoscale phase separation morphology of the spun film. Furthermore, at micrometer scales, phase separation provides a route to produce self-organized structures for templating applications. Understanding the factors that determine the final phase-separated morphology in these systems is consequently an important goal. However, it has to date proved problematic to fully test theoretical models for phase separation during spin coating, due to the high spin speeds, which has limited the spatial resolution of experimental data obtained during the coating process. Without this fundamental understanding, production of optimized micro- and nanoscale structures is hampered. Here, we have employed synchronized stroboscopic illumination together with the high light gathering sensitivity of an electron-multiplying charge-coupled device camera to optically observe structure evolution in such blends during spin coating. Furthermore the use of monochromatic illumination has allowed interference reconstruction of three-dimensional topographies of the spin-coated film as it dries and phase separates with nanometer precision. We have used this new method to directly observe the phase separation process during spinning for a polymer blend (PS-PI) for the first time, providing new insights into the spin-coating process and opening up a route to understand and control phase separation structures. © 2011 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%) crystal by femtosecond laser pulses with an elliptical beam waist. The waveguide is formed by a set of parallel tracks which constitute the depressed cladding. It is a key element for compact and efficient CW waveguide laser operating at 1064 nm and pumped by a multimode laser diode. Special attention is paid to mechanical stress resulting from the inscription process. Numerical calculation of mode distribution and propagation loss with the elasto-optical effect taken into account leads to the conclusion that the depressed cladding is a dominating factor in waveguide mode formation, while the mechanical stress only slightly distorts waveguide modes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optically multiplexed multi-carrier systems with channel spacing reduced to the symbol rate per carrier are highly susceptible to inter-channel crosstalk, which places stringent requirements for the specifications of system components and hinders the use of high-level formats. In this paper, we investigate the performance benefits of using offset 4-, 16-, and 64-quadrature amplitude modulation (QAM) in coherent wavelength division multiplexing (CoWDM). We compare this system with recently reported Nyquist WDM and no-guard-interval optical coherent orthogonal frequency division multiplexing, and show that the presented system greatly relaxes the requirements for device specifications and enhances the spectral efficiency by enabling the use of high-level QAM. The achieved performance can approach the theoretical limits using practical components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first demonstration of a hollow core photonic bandgap fiber suitable for high-rate data transmission at 2µm is presented. Using a custom built Thulium doped fiber amplifier, error-free 8Gbit/s transmission in an optically amplified data channel at 2008nm is reported for the first time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) is a non-invasive three-dimensional imaging system that is capable of producing high resolution in-vivo images. OCT is approved for use in clinical trials in Japan, USA and Europe. For OCT to be used effectively in a clinical diagnosis, a method of standardisation is required to assess the performance across different systems. This standardisation can be implemented using highly accurate and reproducible artefacts for calibration at both installation and throughout the lifetime of a system. Femtosecond lasers can write highly reproducible and highly localised micro-structured calibration artefacts within a transparent media. We report on the fabrication of high quality OCT calibration artefacts in fused silica using a femtosecond laser. The calibration artefacts were written in fused silica due to its high purity and ability to withstand high energy femtosecond pulses. An Amplitude Systemes s-Pulse Yb:YAG femtosecond laser with an operating wavelength of 1026 nm was used to inscribe three dimensional patterns within the highly optically transmissive substrate. Four unique artefacts have been designed to measure a wide variety of parameters, including the points spread function (PSF), modulation transfer function (MTF), sensitivity, distortion and resolution - key parameters which define the performance of the OCT. The calibration artefacts have been characterised using an optical microscope and tested on a swept source OCT. The results demonstrate that the femtosecond laser inscribed artefacts have the potential of quantitatively and qualitatively validating the performance of any OCT system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A diode-cladding-pumped dual wavelength Q-switched Ho3+ -doped fluoride cascade fiber laser operating in the mid-infrared is demonstrated. Stable pulse trains from the 5|6 -> 5|7 and 5|7 -> 5|8 laser transitions were produced, and the µs-level time delay between the pulses from each transition was dependent on the pump power. At maximum pump power and at an acousto-optic modulator repetition rate of 25 kHz, the 5|8 -> 5|7 transition pulse operated at 3.005 µm, a pulse energy of 29 µJ, and a pulse width of 380 ns; the 5|7 -> 5|8 transition pulse correspondingly produced 7 µJ pulse energy and 260 ns pulse width at 2.074 µm. To the best of our knowledge, this is the first demonstration of a Q-switched fiber laser operating beyond 3 µm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tuning of a diode-cladding-pumped cascade Ho3+ -doped fluoride fiber laser is demonstrated using a single plane ruled diffraction grating. At the maximum available pump power, a tuning range 2955-3021 nm, an output power of >500 mW, and a bandwidth of <1nm was achieved for tuning across the 5|6 -> 5|7 transition. In a separate experiment, the  5|7 -> 5|8 laser transition was tuned from 2064 to 2082 nm (with a bandwidth of <0.5 nm) which simultaneously shortened the average emission wavelen 5|6 -> 5|7 length of the free-running  laser transition of the cascade from 2.959 to 2.954 µm. This demonstration represents the first fiber laser that can tune beyond 3 µm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We combine all the known experimental demonstrations and spectroscopic parameters into a numerical model of the Ho3+ -doped fluoride glass fiber laser system. Core-pumped and cladding-pumped arrangements were simulated for all the population-bottlenecking mitigation schemes that have been tested, and good agreement between the model and the previously reported experimental results was achieved in most but not in all cases. In a similar way to Er3+ -doped fluoride glass fiber lasers, we found that the best match with measurements required scaled-down rate parameters for the energy transfer processes that operate in moderate to highly concentrated systems. The model isolated the dominant processes affecting the performance of each of the bottlenecking mitigation schemes and pump arrangements. It was established that pump excited-state absorption is the main factor affecting the performance of the core-pumped demonstrations of the laser, while energy transfer between rare earth ions is the main factor controlling the performance in cladding-pumped systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the development of an ultraviolet curable hydrogel, based on combinations of poly(ethylene glycol) dimethacrylate (PEGMA), acrylic acid (AA) and N-Isopropylacrylamide (NIPPAm) for imprint lithography processes. The hydrogel was successfully imprinted to form dynamic microlens arrays. The response rate of the microlenses by volume change to water absorption was studied optically showing tunable focalisation of the light. Important optical refractive index change was measured between the dry and wet state of the microlenses. Our work suggests the use of this newly developed printable hydrogel for various imprinted components for sensing and imaging systems. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some critical aspects of a new kind of on-line measurement technique for micro and nanoscale surface measurements are described. This attempts to use spatial light-wave scanning to replace mechanical stylus scanning, and an optical fibre interferometer to replace optically bulky interferometers for measuring the surfaces. The basic principle is based on measuring the phase shift of a reflected optical signal. Wavelength-division-multiplexing and fibre Bragg grating techniques are used to carry out wavelength-to-field transformation and phase-to-depth detection, allowing a large dynamic measurement ratio (range/resolution) and high signal-to-noise ratio with remote access. In effect the paper consists of two parts: multiplexed fibre interferometry and remote on-machine surface detection sensor (an optical dispersive probe). This paper aims to investigate the metrology properties of a multiplexed fibre interferometer and to verify its feasibility by both theoretical and experimental studies. Two types of optical probes, using a dispersive prism and a blazed grating, respectively, are introduced to realize wavelength-to-spatial scanning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel all-fiber bipolar delay line filter is realized in a single-line cascaded high birefringence fiber structure. Optically coherent operation is achieved with suppression of interference noise. Complementary filter outputs give simultaneous lowpass and highpass responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first demonstration of a hollow core photonic bandgap fiber (HC-PBGF) suitable for high-rate data transmission in the 2 μm waveband is presented. The fiber has a record low loss for this wavelength region (4.5 dB/km at 1980 nm) and a >150 nm wide surface-mode-free transmission window at the center of the bandgap. Detailed analysis of the optical modes and their propagation along the fiber, carried out using a time-of-flight technique in conjunction with spatially and spectrally resolved (S) imaging, provides clear evidence that the HC-PBGF can be operated as quasi-single mode even though it supports up to four mode groups. Through the use of a custom built Thulium doped fiber amplifier with gain bandwidth closely matched to the fiber's low loss window, error-free 8 Gbit/s transmission in an optically amplified data channel at 2008 nm over 290 m of 19 cell HC-PBGF is reported. © 2013 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present experimental results for the effect of an increased supervisory signal power in a high-loss loopback supervisory system in an optically amplified wavelength division multiplexing (WDM) transmission line. The study focuses on the investigation of increasing the input power for the supervisory signal and the effect on the co-propagating WDM data signals using different channel spacing. This investigation is useful for determining the power limitation of the supervisory signal if extra power is needed to improve the monitoring. The study also shows the effect of spacing on the quality of the supervisory signal itself because of interaction with adjacent data signals. © The Institution of Engineering and Technology 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Internal haemorrhage, often leading to cardio-vascular arrest happens to be one of the prime sources of high fatality rates in mammals. We propose a simplistic model of fluid flow in our attempt to specify the location of the haemorrhagic spot, which, if located accurately, could possibly be operated leading to an instant cure. The model we employ for the purpose is basically fluid mechanical in origin and consists of a viscous fluid, pumped by a periodic force and flowing through an elastic tube. The analogy is with that of blood, pumped from the heart and flowing through an artery or vein. Our results, aided by graphical illustrations, match reasonably well with experimental observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate second harmonic generation at 1621 nm in a low-loss orientation-patterned GaAs waveguide pumped by an optical parametric oscillator system. The losses were estimated to be 2.12 dB/cm.