909 resultados para On-line monitoring


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The roll forming process is increasingly used in the automotive industry for the manufacture of structural and crash components from Ultra High Strength Steel (UHSS). Due to the high strength of UHSS (<1GPa) even small and commonly observed material property variations from coil to coil can result in significant changes in material yield and through that affect the final shape of the roll formed component. This requires the re-adjustment of tooling to compensate for shape defects and maintain part geometry resulting in costly downtimes of equipment. This paper presents a first step towards an in-line shape compensation method that based on the monitoring of roll load and torque allows for the estimation of shape defects and the subsequent re-adjustment of tooling for compensation. For this the effect of material property variation on common shape defects observed in the roll forming process as well as measurable process parameters such as roll load and torque needs to be understood. The effect of yield strength and material hardening on roll load and torque as well as longitudinal bow is investigated via experimental trials and numerical analysis. A regression analysis combined with Analysis of Variance (ANOVA) techniques is employed to establish the relationships between the process and material parameters and to determine their percentage influence on longitudinal bow, roll load and torque. The study will show that the level of longitudinal bow, one of the major shape defects observed in roll forming, can be estimated by variations in roll load and torque.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Ongoing CD4 monitoring in patients on antiretroviral therapy (ART) with viral suppression has been questioned. We evaluated the probability of CD4 decline in children with viral suppression and CD4 recovery after 1 year on ART. METHODS We included children from 8 South African cohorts with routine HIV-RNA monitoring if (1) they were "responders" [HIV-RNA < 400 copies/mL and no severe immunosuppression after ≥1 year on ART (time 0)] and (2) ≥1 HIV-RNA and CD4 measurement within 15 months of time 0. We determined the probability of CD4 decline to World Health Organization-defined severe immunosuppression for 3 years after time 0 if viral suppression was maintained. Follow-up was censored at the earliest of the following dates: the day before first HIV-RNA measurement >400 copies/mL; day before a >15-month gap in testing and date of death, loss to follow-up, transfer out or database closure. RESULTS Among 5984 children [median age at time 0: 5.8 years (interquartile range: 3.1-9.0)], 270 children experienced a single CD4 decline to severe immunosuppression within 3 years of time 0 with probability of 6.6% (95% CI: 5.8-7.4). A subsequent CD4 measurement within 15 months of the first low measurement was available for 63% of children with CD4 decline and 86% showed CD4 recovery. The probability of CD4 decline was lowest (2.8%) in children aged 2 years or older with no or mild immunosuppression and on ART for <18 months at time 0. This group comprised 40% of children. CONCLUSIONS This finding suggests that it may be safe to stop routine CD4 monitoring in children older than 2 years and rely on virologic monitoring alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Europe, Cardiovascular Diseases (CVD) are the leading source of death, causing 45% of all deceases. Besides, Heart Failure, the paradigm of CVD, mainly affects people older than 65. In the current aging society, the European MyHeart Project was created, whose mission is to empower citizens to fight CVD by leading a preventive lifestyle and being able to be diagnosed at an early stage. This paper presents the development of a Heart Failure Management System, based on daily monitoring of Vital Body Signals, with wearable and mobile technologies, for the continuous assessment of this chronic disease. The System makes use of the latest technologies for monitoring heart condition, both with wearable garments (e.g. for measuring ECG and Respiration); and portable devices (such as Weight Scale and Blood Pressure Cuff) both with Bluetooth capabilities

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a multi-stage algorithm for the dynamic condition monitoring of a gear. The algorithm provides information referred to the gear status (fault or normal condition) and estimates the mesh stiffness per shaft revolution in case that any abnormality is detected. In the first stage, the analysis of coefficients generated through discrete wavelet transformation (DWT) is proposed as a fault detection and localization tool. The second stage consists in establishing the mesh stiffness reduction associated with local failures by applying a supervised learning mode and coupled with analytical models. To do this, a multi-layer perceptron neural network has been configured using as input features statistical parameters sensitive to torsional stiffness decrease and derived from wavelet transforms of the response signal. The proposed method is applied to the gear condition monitoring and results show that it can update the mesh dynamic properties of the gear on line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contact Spatially Resolved Spectroscopy (SRS) measurements by means of a fiber-optics probe were employed for nondestructive assessment and monitoring of Braeburn apples during shelflife storage. SRS measurements and estimation of optical properties were calibrated and validated by means of liquid optical phantoms with known optical properties and a metamodeling method. The acquired optical properties (absorption and reduced scattering coefficients) for the apples during shelf-life storage were found to provide useful information for nondestructive evaluation of apple quality attributes (firmness and SSC) and for monitoring the changes in their microstructure and chemical composition. On-line SRS measurement was achieved by mounting the SRS probe over a conveyor system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, the increasing sophistication of embedded multimedia systems and wireless communication technologies has promoted a widespread utilization of video streaming applications. It has been reported in 2013 that youngsters, aged between 13 and 24, spend around 16.7 hours a week watching online video through social media, business websites, and video streaming sites. Video applications have already been blended into people daily life. Traditionally, video streaming research has focused on performance improvement, namely throughput increase and response time reduction. However, most mobile devices are battery-powered, a technology that grows at a much slower pace than either multimedia or hardware developments. Since battery developments cannot satisfy expanding power demand of mobile devices, research interests on video applications technology has attracted more attention to achieve energy-efficient designs. How to efficiently use the limited battery energy budget becomes a major research challenge. In addition, next generation video standards impel to diversification and personalization. Therefore, it is desirable to have mechanisms to implement energy optimizations with greater flexibility and scalability. In this context, the main goal of this dissertation is to find an energy management and optimization mechanism to reduce the energy consumption of video decoders based on the idea of functional-oriented reconfiguration. System battery life is prolonged as the result of a trade-off between energy consumption and video quality. Functional-oriented reconfiguration takes advantage of the similarities among standards to build video decoders reconnecting existing functional units. If a feedback channel from the decoder to the encoder is available, the former can signal the latter changes in either the encoding parameters or the encoding algorithms for energy-saving adaption. The proposed energy optimization and management mechanism is carried out at the decoder end. This mechanism consists of an energy-aware manager, implemented as an additional block of the reconfiguration engine, an energy estimator, integrated into the decoder, and, if available, a feedback channel connected to the encoder end. The energy-aware manager checks the battery level, selects the new decoder description and signals to build a new decoder to the reconfiguration engine. It is worth noting that the analysis of the energy consumption is fundamental for the success of the energy management and optimization mechanism. In this thesis, an energy estimation method driven by platform event monitoring is proposed. In addition, an event filter is suggested to automate the selection of the most appropriate events that affect the energy consumption. At last, a detailed study on the influence of the training data on the model accuracy is presented. The modeling methodology of the energy estimator has been evaluated on different underlying platforms, single-core and multi-core, with different characteristics of workload. All the results show a good accuracy and low on-line computation overhead. The required modifications on the reconfiguration engine to implement the energy-aware manager have been assessed under different scenarios. The results indicate a possibility to lengthen the battery lifetime of the system in two different use-cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present experimental results for monitoring long distance WDM communication links using a line monitoring system suitable for legacy optically amplified long-haul undersea systems. This monitoring system is based on setting up a simple, passive, low cost high-loss optical loopback circuit at each repeater that provides a connection between the existing anti-directional undersea fibres, and can be used to define fault location. Fault location is achieved by transmitting a short pulse supervisory signal along with the WDM data signals where a portion of the overall signal is attenuated and returned to the transmit terminal by the loopback circuit. A special receiver is used at the terminal to extract the weakly returned supervisory signal where each supervisory signal is received at different times corresponding to different optical repeaters. Therefore, the degradation in any repeater appears on its corresponding supervisory signal level. We use a recirculating loop to simulate a 4600 km fibre link, on which a high-loss loopback supervisory system is implemented. Successful monitoring is accomplished through the production of an appropriate supervisory signal at the terminal that is detected and identified in a satisfactory time period after passing through up to 45 dB attenuation in the loopback circuit. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To assess and explain deviations from recommended practice in National Institute for Clinical Excellence (NICE) guidelines in relation to fetal heart monitoring. Design: Qualitative study. Setting: Large teaching hospital in the UK. Sample: Sixty-six hours of observation of 25 labours and interviews with 20 midwives of varying grades. Methods: Structured observations of labour and semistructured interviews with midwives. Interviews were undertaken using a prompt guide, audiotaped, and transcribed verbatim. Analysis was based on the constant comparative method, assisted by QSR N5 software. Main outcome measures: Deviations from recommended practice in relation to fetal monitoring and insights into why these occur. Results: All babies involved in the study were safely delivered, but 243 deviations from recommended practice in relation to NICE guidelines on fetal monitoring were identified, with the majority (80%) of these occurring in relation to documentation. Other deviations from recommended practice included indications for use of electronic fetal heart monitoring and conduct of fetal heart monitoring. There is evidence of difficulties with availability and maintenance of equipment, and some deficits in staff knowledge and skill. Differing orientations towards fetal monitoring were reported by midwives, which were likely to have impacts on practice. The initiation, management, and interpretation of fetal heart monitoring is complex and distributed across time, space, and professional boundaries, and practices in relation to fetal heart monitoring need to be understood within an organisational and social context. Conclusion: Some deviations from best practice guidelines may be rectified through straightforward interventions including improved systems for managing equipment and training. Other deviations from recommended practice need to be understood as the outcomes of complex processes that are likely to defy easy resolution. © RCOG 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer integrated monitoring is a very large area in engineering where on-line, real time data acquisition with the aid of sensors is the solution to many problems in the manufacturing industry as opposed to the old data logging method by graphics analysis. The raw data which is collected this way however is useless in the absence of a proper computerized management system. The transfer of data between the management and the shop floor processes has been impossible in the past unless all the computers in the system were totally compatible with each other. This limits the efficiency of the systems because they get governed by the limitations of the computers. General Motors of U.S.A. have recently started research on a new standard called the Manufacturing Automation Protocol (MAP) which is expected to allow data transfer between different types of computers. This is still in early development stages and also is currently very expensive. This research programme shows how such a shop floor data acquisition system and a complete management system on entirely different computers can be integrated together to form a single system by achieving data transfer communications using a cheaper but a superior alternative to MAP. Standard communication character sets and hardware such as ASCII and UARTs have been used in this method but the technique is so powerful that totally incompatible computers are shown to run different programs (in different languages) simultaneously and yet receive data from each other and process in their own CPUs with no human intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present experimental results for monitoring long distance WDM communication links using a line monitoring system suitable for legacy optically amplified long-haul undersea systems. This monitoring system is based on setting up a simple, passive, low cost high-loss optical loopback circuit at each repeater that provides a connection between the existing anti-directional undersea fibres, and can be used to define fault location. Fault location is achieved by transmitting a short pulse supervisory signal along with the WDM data signals where a portion of the overall signal is attenuated and returned to the transmit terminal by the loopback circuit. A special receiver is used at the terminal to extract the weakly returned supervisory signal where each supervisory signal is received at different times corresponding to different optical repeaters. Therefore, the degradation in any repeater appears on its corresponding supervisory signal level. We use a recirculating loop to simulate a 4600 km fibre link, on which a high-loss loopback supervisory system is implemented. Successful monitoring is accomplished through the production of an appropriate supervisory signal at the terminal that is detected and identified in a satisfactory time period after passing through up to 45 dB attenuation in the loopback circuit. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present experimental results for monitoring long distance WDM communication links using a line monitoring system suitable for legacy optically amplified long-haul undersea systems. This monitoring system is based on setting up a simple, passive, low cost high-loss optical loopback circuit at each repeater that provides a connection between the existing anti-directional undersea fibres, and can be used to define fault location. Fault location is achieved by transmitting a short pulse supervisory signal along with the WDM data signals where a portion of the overall signal is attenuated and returned to the transmit terminal by the loopback circuit. A special receiver is used at the terminal to extract the weakly returned supervisory signal where each supervisory signal is received at different times corresponding to different optical repeaters. Therefore, the degradation in any repeater appears on its corresponding supervisory signal level. We use a recirculating loop to simulate a 4600 km fibre link, on which a high-loss loopback supervisory system is implemented. Successful monitoring is accomplished through the production of an appropriate supervisory signal at the terminal that is detected and identified in a satisfactory time period after passing through up to 45 dB attenuation in the loopback circuit. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When machining a large-scale aerospace part, the part is normally located and clamped firmly until a set of features are machined. When the part is released, its size and shape may deform beyond the tolerance limits due to stress release. This paper presents the design of a new fixing method and flexible fixtures that would automatically respond to workpiece deformation during machining. Deformation is inspected and monitored on-line, and part location and orientation can be adjusted timely to ensure follow-up operations are carried out under low stress and with respect to the related datum defined in the design models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.