944 resultados para Obstacle avoidance
Resumo:
At present, acute vascular rejection (AVR) remains a primary obstacle inhibiting long-term graft survival in the pig-to-non-human primate transplant model. The present study was undertaken to determine whether repetitive injection of low dose Yunnan-cobra venom factor (Y-CVF), a potent complement inhibitor derived from the venom of Naja kaouthia can completely abrogate hemolytic complement activity and subsequently improve the results in a pig-to-rhesus monkey heterotopic heart transplant model. Nine adult rhesus monkeys received a heterotopic heart transplant from wild-type pigs and the recipients were allocated into two groups: group 1 (n = 4) received repetitive injection of low dose Y-CVF until the end of the study and group 2 (n = 5) did not receive Y-CVF. All recipients were treated with cyclosporine A (CsA), cyclophosphamide (CyP) and steroids. Repetitive Y-CVF treatment led to very dramatic fall in CH50 and serum C3 levels (CH50 < 3 units/C3 remained undetectable throughout the experiment) and successfully prevented hyperacute rejection (HAR), while three of five animals in group 2 underwent HAR. However, the continuous suppression of circulating complement did not prevent AVR and the grafts in group 1 survived from 8 to 13 days. Despite undetectable C3 in circulating blood, C3 deposition was present in these grafts. The venular thrombosis was the predominant histopathologic feature of AVR. We conclude that repetitive injection of low dose Y-CVF can be used to continuously suppress circulating complement in a very potent manner and successfully prevent HAR. However, this therapy did not inhibit complement deposition in the graft and failed to prevent AVR. These data suggest that using alternative pig donors [i.e. human decay accelerating factor (hDAF)-transgenic] in combination with the systemic use of complement inhibitors may be necessary to further control complement activation and improve survival in pig-to-non-human primate xenotransplant model.
Resumo:
Matrix anisotropy is important for long term in vivo functionality. However, it is not fully understood how to guide matrix anisotropy in vitro. Experiments suggest actin-mediated cell traction contributes. Although F-actin in 2D displays a stretch-avoidance response, 3D data are lacking. We questioned how cyclic stretch influences F-actin and collagen orientation in 3D. Small-scale cell-populated fibrous tissues were statically constrained and/or cyclically stretched with or without biochemical agents. A rectangular array of silicone posts attached to flexible membranes constrained a mixture of cells, collagen I and matrigel. F-actin orientation was quantified using fiber-tracking software, fitted using a bi-model distribution function. F-actin was biaxially distributed with static constraint. Surprisingly, uniaxial cyclic stretch, only induced a strong stretch-avoidance response (alignment perpendicular to stretching) at tissue surfaces and not in the core. Surface alignment was absent when a ROCK-inhibitor was added, but also when tissues were only statically constrained. Stretch-avoidance was also observed in the tissue core upon MMP1-induced matrix perturbation. Further, a strong stretch-avoidance response was obtained for F-actin and collagen, for immediate cyclic stretching, i.e. stretching before polymerization of the collagen. Results suggest that F-actin stress-fibers avoid cyclic stretch in 3D, unless collagen contact guidance dictates otherwise.
Resumo:
Metal-catalyst-free chemical vapor deposition (CVD) of large area uniform nanocrystalline graphene on oxidized silicon substrates is demonstrated. The material grows slowly, allowing for thickness control down to monolayer graphene. The as-grown thin films are continuous with no observable pinholes, and are smooth and uniform across whole wafers, as inspected by optical-, scanning electron-, and atomic force microscopy. The sp 2 hybridized carbon structure is confirmed by Raman spectroscopy. Room temperature electrical measurements show ohmic behavior (sheet resistance similar to exfoliated graphene) and up to 13 of electric-field effect. The Hall mobility is ∼40 cm 2/Vs, which is an order of magnitude higher than previously reported values for nanocrystalline graphene. Transmission electron microscopy, Raman spectroscopy, and transport measurements indicate a graphene crystalline domain size ∼10 nm. The absence of transfer to another substrate allows avoidance of wrinkles, holes, and etching residues which are usually detrimental to device performance. This work provides a broader perspective of graphene CVD and shows a viable route toward applications involving transparent electrodes. © 2012 American Institute of Physics.
Resumo:
Matrix anisotropy is important for long term in vivo functionality. However, it is not fully understood how to guide matrix anisotropy in vitro. Experiments suggest actin-mediated cell traction contributes. Although F-actin in 2D displays a stretch-avoidance response, 3D data are lacking. We questioned how cyclic stretch influences F-actin and collagen orientation in 3D. Small-scale cell-populated fibrous tissues were statically constrained and/or cyclically stretched with or without biochemical agents. A rectangular array of silicone posts attached to flexible membranes constrained a mixture of cells, collagen I and matrigel. F-actin orientation was quantified using fiber-tracking software, fitted using a bi-model distribution function. F-actin was biaxially distributed with static constraint. Surprisingly, uniaxial cyclic stretch, only induced a strong stretch-avoidance response (alignment perpendicular to stretching) at tissue surfaces and not in the core. Surface alignment was absent when a ROCK-inhibitor was added, but also when tissues were only statically constrained. Stretch-avoidance was also observed in the tissue core upon MMP1-induced matrix perturbation. Further, a strong stretch-avoidance response was obtained for F-actin and collagen, for immediate cyclic stretching, i.e. stretching before polymerization of the collagen. Results suggest that F-actin stress-fibers avoid cyclic stretch in 3D, unless collagen contact guidance dictates otherwise. © 2012 Elsevier Ltd.
Resumo:
At low mass flow rates axial compressors suffer from flow instabilities leading to stall and surge. The inception process of these instabilities has been widely researched in the past - primarily with the aim of predicting or averting stall onset. In recent times, attention has shifted to conditions well before stall and has focussed on the level of irregularity in the blade passing signature in the rotor tip region. In general, this irregularity increases in intensity as the flow rate through the compressor is reduced. Attempts have been made to develop stall warning/avoidance procedures based on the level of the flow irregularity, but little effort has been made to characterise the irregularity, or to understand its underlying causes. Work on this project has revealed for the first time that the increase in irregularity in the blade passing signature is highly dependent on both tip-clearance and eccentricity. In a compressor with small, uniform, tip-clearance, the increase in blade passing irregularity which accompanies a reduction in flow rate will be modest. If the tip-clearance is enlarged, however, there will be a sharp rise in irregularity at all circumferential locations. In a compressor with eccentric tip-clearance, the increase in irregularity will only occur in the part of the annulus where the tip-clearance is largest, regardless of the average clearance level. In this paper, some attention is also given to the question of whether this irregularity observed in the pre-stall flow field is due to random turbulence, or to some form of coherent flow structure. Detailed flow measurements reveal that the latter is the case. From these findings, it is clear that a stall warning system based on blade passing signature irregularity will not be viable in an aero-engine where tip-clearance size and eccentricity change during each flight cycle and over the life of the compressor. Copyright © 2011 by ASME.
Resumo:
At low mass flow rates, axial compressors suffer from flow instabilities leading to stall and surge. The inception process of these instabilities has been widely researched in the past---primarily with the aim of predicting or averting stall onset. In recent times, attention has shifted to conditions well before stall and has focused on the level of irregularity in the blade passing signature in the rotor tip region. In general, the irregularity increases in intensity as the flow rate through the compressor is reduced. Attempts have been made to develop stall warning/avoidance procedures based on the level of flow irregularity, but little effort has been made to characterize the irregularity itself, or to understand its underlying cause. Work on this project has revealed for the first time that the increase in irregularity in the blade passing signature is highly dependent on both tip-clearance size and eccentricity. In a compressor with small, uniform, tip-clearance, the increase in blade passing irregularity that accompanies a reduction in flow rate will be modest. If the tip-clearance is enlarged, however, there will be a sharp rise in irregularity at all circumferential locations. In a compressor with eccentric tip-clearance, the increase in irregularity will only occur in the part of the annulus where the tip-clearance is largest, regardless of the average clearance level. In this paper, some attention is also given to the question of whether the irregularity observed in the prestall flow field is due to random turbulence or to some form of coherent flow structure. Detailed flow measurements reveal that the latter is the case. From these findings, it is clear that a stall warning system based on blade passing signature irregularity would be difficult to implement in an aero-engine where tip-clearance size and eccentricity change during each flight cycle and over the life of the compressor. © 2013 American Society of Mechanical Engineers.
Resumo:
The loss mechanisms which control 2D incidence range are discussed with an emphasis on determining which real in-service geometric variations will have the largest impact. For the majority of engine compressor blades (Minlet>0.55) both the negative and positive incidence limits are controlled by supersonic patches. It is shown that these patches are highly sensitive to the geometric variations close to, and around the leading edge. The variations used in this study were measured from newly manufactured as well as ex-service blades. Over most the high pressure compressor considered, it was shown that manufacture variations dominated. The first part of the paper shows that, despite large geometric variations (~10% of leading edge thickness), the incidence range responded in a linear way. The result of this is that the geometric variations have little effect on the mean incidence range of a row of blades. In the second part of the paper a region of the design space is identified where non-linear behavior can result in a 10% reduction in positive incidence range. The mechanism for this is reported and design guidelines for its avoidance offered. In the final part of the paper, the linear behavior at negative incidence and the transonic nature of the flow is exploited to design a robust asymmetric leading edge with a 5% increase in incidence range.
Resumo:
Humans, like other animals, alter their behavior depending on whether a threat is close or distant. We investigated spatial imminence of threat by developing an active avoidance paradigm in which volunteers were pursued through a maze by a virtual predator endowed with an ability to chase, capture, and inflict pain. Using functional magnetic resonance imaging, we found that as the virtual predator grew closer, brain activity shifted from the ventromedial prefrontal cortex to the periaqueductal gray. This shift showed maximal expression when a high degree of pain was anticipated. Moreover, imminence-driven periaqueductal gray activity correlated with increased subjective degree of dread and decreased confidence of escape. Our findings cast light on the neural dynamics of threat anticipation and have implications for the neurobiology of human anxiety-related disorders.
Resumo:
The extreme sensitivity of Sm/Ba at high temperature in air becomes an obstacle to the fabrication of SmBCO single grains that exhibit stable and reliable superconducting properties. In this research, the superconducting properties of SmBCO single grains fabricated by top seeded melt growth (TSMG) from different batches of commercial SmBa2Cu3O 7-d (Sm-123) precursor powder using different processing atmospheres (air and 0.1% O2 in Ar), different processing methods (isothermal growth and continuous cooling) and different amounts of BaO2 content to suppress Sm/Ba substitution in air have been investigated in an attempt to understand fully the TSMG process for this system. As a result, based on extensive data, a novel and simple, low temperature post-annealing approach is proposed specifically to overcome the sensitivity of Tc to Sm/Ba substitution in order to simplify the fabrication of SmBCO and to increase its reliability with a view to the practical processing of these materials. Initial processing trials have been performed successfully to demonstrate the viability of the novel post-annealing process. © 2013 IOP Publishing Ltd.
Resumo:
We investigated diel vertical migrations (DVM) and distributions of rotifers in summer, 2004 and spring, 2005, in Xiangxi Bay of the Three Gorges Reservoir, China. Water temperature, pH, conductivity, and phytoplankton were closely related to rotifer vertical distribution, while dissolved oxygen had no relationship with the vertical distribution of rotifers. The species composition and population density of rotifers changed significantly between seasons. However, rotifer vertical distributions in both seasons were similar. They aggregated at specific depths in the water column. All the rotifer species inhabited the surface layers (0.5-5 m). Generally, the rotifers did not display DVM except for Polyarthra vulgaris (in summer), which performed reverse migration. The reason that rotifers did not perform DVM may be explained by the low abundance of competitors and predators and the high density of food resources at the surface strata.
Resumo:
An enclosure experiment was carried out to test trophic cascade effect of filter-feeding fish on the ecosystem: growth of crustacean zooplankton, and possible mechanism of changes of crustacean community structure. Four fish biomass levels were set as follows: 0, 116, 176 and 316 g m(-2), and lake water ( containing ca. 190 g m(-2) of filter-feeding fishes) was comparatively monitored. Nutrient levels were high in all treatments during the experiment. Lowest algal biomass were measured in fishless treatment. Algal biomass decreased during days 21-56 as a function of fish biomass in treatments of low (LF), medium (MF) and high (HF) fish biomass. Crustaceans biomass decreased with increasing fish biomass. Small-bodied cladocerans, Moina micrura, Diaphanosoma brachyurum and Scapholeberis kingii survived when fish biomass was high whilst, large-bodied cladocerans Daphnia spp. and the cyclopoids Theromcyclops taihokuensis, T. brevifuratus, Mescyclops notius and Cyclops vicinus were abundant only in NF enclosures. Evasive calanoid Sinodiaptomus sarsi was significantly enhanced in LF, but decreased significantly with further increase of fish biomass. Demographic data indicated that M. micrura was well developed in all treatments. Our study indicates that algal biomass might be controlled by silver carp biomass in eutrophic environment. Changes of crustacean community are probably affected by the age of the first generation of species. Species with short generation time were dominant and species with long generation time survived less with high fish biomass. Evasive calanoids hardly developed in treatments with high fish biomass because of the ( bottle neck) effect of nauplii. Species abundance were positively related to fish predation avoidance. Other than direct predation, zooplankton might also be suppressed by filter-feeding fish via competition.
Resumo:
The Chinese sturgeon, Acipenser sinensis, is an anadromous protected species that presently only spawns in the Yangtze River. Using laboratory experiments, we examined the behavioral preference of young Chinese sturgeon to physical habitat (water depth, illumination intensity, substrate color, and cover) and monitored their downstream migration. Hatchling free embryos were photopositive, preferred open habitat, and immediately upon hatching, swam far above the bottom using swim-up and drift. Downstream migration peaked on days 0-1, decreased about 50% or more during days 2-7, and ceased by day 8. Days 0-1 migrants were active both day and night, but days 2-7 migrants were most active during the day. After ceasing migration, days 8-11 embryos were photonegative, preferred dark substrate and sought cover. Free embryos developed into larvae and began feeding on day 12, when another shift in behavior occurred-larvae returned to photopositive behavior and preferred white substrate. The selective factor favoring migration of free embryos upon hatching and swimming far above the bottom may be avoidance of benthic predatory fishes. Free embryos, which must rely on yolk energy for activity and growth, only used 19 cumulative temperature degree-days for peak migration compared to 234 degree-days for growth to first feeding larvae, a 1 : 12 ratio of cumulative temperature units. This ratio suggests that sturgeon species with large migratory embryos, like Chinese sturgeon, which require a high level of energy to swim during migration, may migrate only a short time to conserve most yolk energy for growth.
Resumo:
This paper compares the properties of silicon oxide and nitride as host matrices for Er ions. Erbium-doped silicon nitride films were deposited by a plasma-enhanced chemical-vapour deposition system. After deposition, the films were implanted with Er3+ at different doses. Er-doped thermal grown silicon oxide films were prepared at the same time as references. Photoluminescence features of Er3+ were inspected systematically. It is found that silicon nitride films are suitable for high concentration doping and the thermal quenching effect is not severe. However, a very high annealing temperature up to 1200 degrees C is needed to optically activate Er3+ which may be the main obstacle to impede the application of Er-doped silicon nitride.
Resumo:
Microdefects originating from impurity-dislocation interactions in undoped InP that had been annealed in phosphorus and iron phosphide ambiances have been studied using optical microscopy. The electrical uniformity of the annealed wafer is improved by removing impurity aggregation around dislocations and by eliminating impurity striations in the annealing process. Compared to as-grown Fe-doped semi-insulating (SI) material, SI wafers obtained by annealing undoped InP in iron phosphide ambiances have better uniformity. This is attributed to the avoidance of Fe aggregation around dislocations and dislocation clusters, Fe precipitation and impurity striations, and is related to the use of a low concentration of Fe in the annealed material. The influence of Fe diffusion on the migration of dislocations in the annealing process has been studied and reviewed. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
FePt nanoparticles with average size of 9 nm were synthesized using a diblock polymer micellar method combined with plasma treatment. To prevent from oxidation under ambient conditions, immediately after plasma treatment, the FePt nanoparticle arrays were in situ transferred into the film-growth chamber where they were covered by an SiO2 overlayer. A nearly complete transformation of L1(0) FePt was achieved for samples annealed at temperatures above 700 A degrees C. The well control on the FePt stoichiometry and avoidance from surface oxidation largely enhanced the coercivity, and a value as high as 10 kOe was obtained in this study. An evaluation of magnetic interactions was made using the so-called isothermal remanence (IRM) and dc-demagnetization (DCD) remanence curves and Kelly-Henkel plots (Delta M measurement). The Delta M measurement reveals that the resultant FePt nanoparticles exhibit a rather weak interparticle dipolar coupling, and the absence of interparticle exchange interaction suggests no significant particle agglomeration occurred during the post-annealing. Additionally, a slight parallel magnetic anisotropy was also observed. The results indicate the micellar method has a high potential in preparing FePt nanoparticle arrays used for ultrahigh density recording media.