790 resultados para Object-based Classification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Garment information tracking is required for clean room garment management. In this paper, we present a camera-based robust system with implementation of Optical Character Reconition (OCR) techniques to fulfill garment label recognition. In the system, a camera is used for image capturing; an adaptive thresholding algorithm is employed to generate binary images; Connected Component Labelling (CCL) is then adopted for object detection in the binary image as a part of finding the ROI (Region of Interest); Artificial Neural Networks (ANNs) with the BP (Back Propagation) learning algorithm are used for digit recognition; and finally the system is verified by a system database. The system has been tested. The results show that it is capable of coping with variance of lighting, digit twisting, background complexity, and font orientations. The system performance with association to the digit recognition rate has met the design requirement. It has achieved real-time and error-free garment information tracking during the testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a fully complex-valued radial basis function (RBF) network for regression and classification applications. For regression problems, the locally regularised orthogonal least squares (LROLS) algorithm aided with the D-optimality experimental design, originally derived for constructing parsimonious real-valued RBF models, is extended to the fully complex-valued RBF (CVRBF) network. Like its real-valued counterpart, the proposed algorithm aims to achieve maximised model robustness and sparsity by combining two effective and complementary approaches. The LROLS algorithm alone is capable of producing a very parsimonious model with excellent generalisation performance while the D-optimality design criterion further enhances the model efficiency and robustness. By specifying an appropriate weighting for the D-optimality cost in the combined model selecting criterion, the entire model construction procedure becomes automatic. An example of identifying a complex-valued nonlinear channel is used to illustrate the regression application of the proposed fully CVRBF network. The proposed fully CVRBF network is also applied to four-class classification problems that are typically encountered in communication systems. A complex-valued orthogonal forward selection algorithm based on the multi-class Fisher ratio of class separability measure is derived for constructing sparse CVRBF classifiers that generalise well. The effectiveness of the proposed algorithm is demonstrated using the example of nonlinear beamforming for multiple-antenna aided communication systems that employ complex-valued quadrature phase shift keying modulation scheme. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the selection of inputs for classification models based on ratios of measured quantities. For this purpose, all possible ratios are built from the quantities involved and variable selection techniques are used to choose a convenient subset of ratios. In this context, two selection techniques are proposed: one based on a pre-selection procedure and another based on a genetic algorithm. In an example involving the financial distress prediction of companies, the models obtained from ratios selected by the proposed techniques compare favorably to a model using ratios usually found in the financial distress literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In rapid scan Fourier transform spectrometry, we show that the noise in the wavelet coefficients resulting from the filter bank decomposition of the complex insertion loss function is linearly related to the noise power in the sample interferogram by a noise amplification factor. By maximizing an objective function composed of the power of the wavelet coefficients divided by the noise amplification factor, optimal feature extraction in the wavelet domain is performed. The performance of a classifier based on the output of a filter bank is shown to be considerably better than that of an Euclidean distance classifier in the original spectral domain. An optimization procedure results in a further improvement of the wavelet classifier. The procedure is suitable for enhancing the contrast or classifying spectra acquired by either continuous wave or THz transient spectrometers as well as for increasing the dynamic range of THz imaging systems. (C) 2003 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The usefulness of motor subtypes of delirium is unclear due to inconsistency in subtyping methods and a lack of validation with objective measures of activity. The activity of 40 patients was measured over 24 h with a commercial accelerometer-based activity monitor. Accelerometry data from patients with DSM-IV delirium that were readily divided into hyperactive, hypoactive and mixed motor subtypes, were used to create classification trees that were Subsequently applied to the remaining cohort to define motoric subtypes. The classification trees used the periods of sitting/lying, standing, stepping and number of postural transitions as measured by the activity monitor as determining factors from which to classify the delirious cohort. The use of a classification system shows how delirium subtypes can be categorised in relation to overall activity and postural changes, which was one of the most discriminating measures examined. The classification system was also implemented to successfully define other patient motoric subtypes. Motor subtypes of delirium defined by observed ward behaviour differ in electronically measured activity levels. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The usefulness of motor subtypes of delirium is unclear due to inconsistency in subtyping methods and a lack of validation with objective measures of activity. The activity of 40 patients was measured over 24 h with a discrete accelerometer-based activity monitor. The continuous wavelet transform (CWT) with various mother wavelets were applied to accelerometry data from three randomly selected patients with DSM-IV delirium that were readily divided into hyperactive, hypoactive, and mixed motor subtypes. A classification tree used the periods of overall movement as measured by the discrete accelerometer-based monitor as determining factors for which to classify these delirious patients. This data used to create the classification tree were based upon the minimum, maximum, standard deviation, and number of coefficient values, generated over a range of scales by the CWT. The classification tree was subsequently used to define the remaining motoric subtypes. The use of a classification system shows how delirium subtypes can be categorized in relation to overall motoric behavior. The classification system was also implemented to successfully define other patient motoric subtypes. Motor subtypes of delirium defined by observed ward behavior differ in electronically measured activity levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many kernel classifier construction algorithms adopt classification accuracy as performance metrics in model evaluation. Moreover, equal weighting is often applied to each data sample in parameter estimation. These modeling practices often become problematic if the data sets are imbalanced. We present a kernel classifier construction algorithm using orthogonal forward selection (OFS) in order to optimize the model generalization for imbalanced two-class data sets. This kernel classifier identification algorithm is based on a new regularized orthogonal weighted least squares (ROWLS) estimator and the model selection criterion of maximal leave-one-out area under curve (LOO-AUC) of the receiver operating characteristics (ROCs). It is shown that, owing to the orthogonalization procedure, the LOO-AUC can be calculated via an analytic formula based on the new regularized orthogonal weighted least squares parameter estimator, without actually splitting the estimation data set. The proposed algorithm can achieve minimal computational expense via a set of forward recursive updating formula in searching model terms with maximal incremental LOO-AUC value. Numerical examples are used to demonstrate the efficacy of the algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fundamental principle in practical nonlinear data modeling is the parsimonious principle of constructing the minimal model that explains the training data well. Leave-one-out (LOO) cross validation is often used to estimate generalization errors by choosing amongst different network architectures (M. Stone, "Cross validatory choice and assessment of statistical predictions", J. R. Stast. Soc., Ser. B, 36, pp. 117-147, 1974). Based upon the minimization of LOO criteria of either the mean squares of LOO errors or the LOO misclassification rate respectively, we present two backward elimination algorithms as model post-processing procedures for regression and classification problems. The proposed backward elimination procedures exploit an orthogonalization procedure to enable the orthogonality between the subspace as spanned by the pruned model and the deleted regressor. Subsequently, it is shown that the LOO criteria used in both algorithms can be calculated via some analytic recursive formula, as derived in this contribution, without actually splitting the estimation data set so as to reduce computational expense. Compared to most other model construction methods, the proposed algorithms are advantageous in several aspects; (i) There are no tuning parameters to be optimized through an extra validation data set; (ii) The procedure is fully automatic without an additional stopping criteria; and (iii) The model structure selection is directly based on model generalization performance. The illustrative examples on regression and classification are used to demonstrate that the proposed algorithms are viable post-processing methods to prune a model to gain extra sparsity and improved generalization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an approach for automatic classification of pulsed Terahertz (THz), or T-ray, signals highlighting their potential in biomedical, pharmaceutical and security applications. T-ray classification systems supply a wealth of information about test samples and make possible the discrimination of heterogeneous layers within an object. In this paper, a novel technique involving the use of Auto Regressive (AR) and Auto Regressive Moving Average (ARMA) models on the wavelet transforms of measured T-ray pulse data is presented. Two example applications are examined - the classi. cation of normal human bone (NHB) osteoblasts against human osteosarcoma (HOS) cells and the identification of six different powder samples. A variety of model types and orders are used to generate descriptive features for subsequent classification. Wavelet-based de-noising with soft threshold shrinkage is applied to the measured T-ray signals prior to modeling. For classi. cation, a simple Mahalanobis distance classi. er is used. After feature extraction, classi. cation accuracy for cancerous and normal cell types is 93%, whereas for powders, it is 98%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light Detection And Ranging (LIDAR) is an important modality in terrain and land surveying for many environmental, engineering and civil applications. This paper presents the framework for a recently developed unsupervised classification algorithm called Skewness Balancing for object and ground point separation in airborne LIDAR data. The main advantages of the algorithm are threshold-freedom and independence from LIDAR data format and resolution, while preserving object and terrain details. The framework for Skewness Balancing has been built in this contribution with a prediction model in which unknown LIDAR tiles can be categorised as “hilly” or “moderate” terrains. Accuracy assessment of the model is carried out using cross-validation with an overall accuracy of 95%. An extension to the algorithm is developed to address the overclassification issue for hilly terrain. For moderate terrain, the results show that from the classified tiles detached objects (buildings and vegetation) and attached objects (bridges and motorway junctions) are separated from bare earth (ground, roads and yards) which makes Skewness Balancing ideal to be integrated into geographic information system (GIS) software packages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Airborne LIght Detection And Ranging (LIDAR) provides accurate height information for objects on the earth, which makes LIDAR become more and more popular in terrain and land surveying. In particular, LIDAR data offer vital and significant features for land-cover classification which is an important task in many application domains. In this paper, an unsupervised approach based on an improved fuzzy Markov random field (FMRF) model is developed, by which the LIDAR data, its co-registered images acquired by optical sensors, i.e. aerial color image and near infrared image, and other derived features are fused effectively to improve the ability of the LIDAR system for the accurate land-cover classification. In the proposed FMRF model-based approach, the spatial contextual information is applied by modeling the image as a Markov random field (MRF), with which the fuzzy logic is introduced simultaneously to reduce the errors caused by the hard classification. Moreover, a Lagrange-Multiplier (LM) algorithm is employed to calculate a maximum A posteriori (MAP) estimate for the classification. The experimental results have proved that fusing the height data and optical images is particularly suited for the land-cover classification. The proposed approach works very well for the classification from airborne LIDAR data fused with its coregistered optical images and the average accuracy is improved to 88.9%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A unified view on the interfacial instability in a model of aluminium reduction cells in the presence of a uniform, vertical, background magnetic field is presented. The classification of instability modes is based on the asymptotic theory for high values of parameter β, which characterises the ratio of the Lorentz force based on the disturbance current, and gravity. It is shown that the spectrum of the travelling waves consists of two parts independent of the horizontal cross-section of the cell: highly unstable wall modes and stable or weakly unstable centre, or Sele’s modes. The wall modes with the disturbance of the interface being localised at the sidewalls of the cell dominate the dynamics of instability. Sele’s modes are characterised by a distributed disturbance over the whole horizontal extent of the cell. As β increases these modes are stabilized by the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major infrastructure project is used to investigate the role of digital objects in the coordination of engineering design work. From a practice-based perspective, research emphasizes objects as important in enabling cooperative knowledge work and knowledge sharing. The term ‘boundary object’ has become used in the analysis of mutual and reciprocal knowledge sharing around physical and digital objects. The aim is to extend this work by analysing the introduction of an extranet into the public–private partnership project used to construct a new motorway. Multiple categories of digital objects are mobilized in coordination across heterogeneous, cross-organizational groups. The main findings are that digital objects provide mechanisms for accountability and control, as well as for mutual and reciprocal knowledge sharing; and that different types of objects are nested, forming a digital infrastructure for project delivery. Reconceptualizing boundary objects as a digital infrastructure for delivery has practical implications for management practices on large projects and for the use of digital tools, such as building information models, in construction. It provides a starting point for future research into the changing nature of digitally enabled coordination in project-based work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we discuss current work concerning Appearance-based and CAD-based vision; two opposing vision strategies. CAD-based vision is geometry based, reliant on having complete object centred models. Appearance-based vision builds view dependent models from training images. Existing CAD-based vision systems that work with intensity images have all used one and zero dimensional features, for example lines, arcs, points and corners. We describe a system we have developed for combining these two strategies. Geometric models are extracted from a commercial CAD library of industry standard parts. Surface appearance characteristics are then learnt automatically by observing actual object instances. This information is combined with geometric information and is used in hypothesis evaluation. This augmented description improves the systems robustness to texture, specularities and other artifacts which are hard to model with geometry alone, whilst maintaining the advantages of a geometric description.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the use of a genetic algorithm to select financial ratios for corporate distress classification models. For this purpose, the fitness value associated to a set of ratios is made to reflect the requirements of maximizing the amount of information available for the model and minimizing the collinearity between the model inputs. A case study involving 60 failed and continuing British firms in the period 1997-2000 is used for illustration. The classification model based on ratios selected by the genetic algorithm compares favorably with a model employing ratios usually found in the financial distress literature.