912 resultados para OD Volume Variation, Short-Term OD Volume Prediction, ETC-OD Data, Bayesian Network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heating the scleractinian coral, Montipora monasteriata (Forskal 1775) to 32 degrees C under < 650 mu mol quanta m(-2) s(-1) led to bleaching in the form of a reduction in Peridinin, xanthophyll pool, chlorophyll c(2) and chlorophyll a, but areal dinoflagellates densities did not decline. Associated with this bleaching, chlorophyll (Chl) allomerization and dinoflagellate xanthophyll cycling increased. Chl allomerization is believed to result from the interaction of Chl with singlet oxygen (O-1(2)) or other reactive oxygen species. Thermally induced increases in Chl allomerization are consistent with other studies that have demonstrated that thermal stress generates reactive oxygen species in symbiotic dinoflagellates. Xanthophyll cycling requires the establishment of a pH gradient across the thylakoid membrane. Our results indicate that, during the early stages of thermal stress, thylakoid membranes are intact. Different morphs of M. monasteriata responded differently to the heat stress applied: heavily pigmented coral hosts taken from a high-light environment showed significant reductions in green fluorescent protein (GFP)-like homologues, whereas nonhost pigmented high-light morphs experienced a significant reduction in water-soluble protein content. Paradoxically, the more shade acclimated cave morph were, based on Chl fluorescence data, less thermally stressed than either of the high-light morphs. These results Support the importance of coral pigments for the regulation of the light environment within the host tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disease is the result of interactions amongst pathogens, the environment and host organisms. To investigate the effect of stress on Penaeus monodon, juvenile shrimp were given short term exposure to hypoxic, hyperthermic and osmotic stress twice over a 1-week period and estimates of total haemocyte count (THC), heat shock protein (HSP) 70 expression and load of gill associated virus (GAV) were determined at different time points. While no significant differences were observed in survival and THC between stressed and control shrimp (P>0.05), HSP 70 expression and GAV load changed significantly (P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data from diverse studies endorse ideas that short term torpor and hibernation are expressions of ancient characters. In evolutionary terms, their basic mechanisms are probably plesiomorphic (= ancestral/primitive) and physiologically similar. This contrasts with the alternate view that they are apomorphic (= derived, specialized), arising independently in many taxa from homeothermic ancestry by numerous apparent convergences. This paper explores some of the implications of accepting the plesiomorphic interpretation. Hibernation is, of course, a complex phenomenon that has undergone variations and refinements in different mammalian lineages. The argument is not that hibernation in total is a plesiomorphic character, but that it is built upon fundamental processes that are. Taking this view provides a framework for research that emphasizes the value of comparative studies, particularly of reptiles and birds. Studies of reptiles, for example, might unravel the mystery about periodic arousals. A plesiomorphic framework also explains the most extreme examples of hibernation as derived specializations from ancestry in which heterothermy is more about energy management than escape from cold. It cautions against using low body temperature (Tb) alone to diagnose torpor, emphasizes the need to distinguish between constitutional eurythermy (plesiomorphic) and constitutional stenothermy (apomorphic), and leads to a parsimonious theory about the evolution of endothermy. The paper proposes that brown adipose tissue (BAT) is apomorphic within eutheria and highlights the conundrum posed by the occurrence of both nonshivering thermogenesis (NST) and rapid arousal from hibernation in noneutherian mammals that lack BAT and uncoupling protein 1 (UCP1). It endorses the likely existence of a different, ancient and widespread mechanism for regulatory NST in mammals.