895 resultados para Numerical analysis, Finite element method, Nonlinear analysis
Resumo:
Die Untersuchung des dynamischen aeroelastischen Stabilitätsverhaltens von Flugzeugen erfordert sehr komplexe Rechenmodelle, welche die wesentlichen elastomechanischen und instationären aerodynamischen Eigenschaften der Konstruktion wiedergeben sollen. Bei der Modellbildung müssen einerseits Vereinfachungen und Idealisierungen im Rahmen der Anwendung der Finite Elemente Methode und der aerodynamischen Theorie vorgenommen werden, deren Auswirkungen auf das Simulationsergebnis zu bewerten sind. Andererseits können die strukturdynamischen Kenngrößen durch den Standschwingungsversuch identifiziert werden, wobei die Ergebnisse Messungenauigkeiten enthalten. Für eine robuste Flatteruntersuchung müssen die identifizierten Unwägbarkeiten in allen Prozessschritten über die Festlegung von unteren und oberen Schranken konservativ ermittelt werden, um für alle Flugzustände eine ausreichende Flatterstabilität sicherzustellen. Zu diesem Zweck wird in der vorliegenden Arbeit ein Rechenverfahren entwickelt, welches die klassische Flatteranalyse mit den Methoden der Fuzzy- und Intervallarithmetik verbindet. Dabei werden die Flatterbewegungsgleichungen als parameterabhängiges nichtlineares Eigenwertproblem formuliert. Die Änderung der komplexen Eigenlösung infolge eines veränderlichen Einflussparameters wird mit der Methode der numerischen Fortsetzung ausgehend von der nominalen Startlösung verfolgt. Ein modifizierter Newton-Iterations-Algorithmus kommt zur Anwendung. Als Ergebnis liegen die berechneten aeroelastischen Dämpfungs- und Frequenzverläufe in Abhängigkeit von der Fluggeschwindigkeit mit Unschärfebändern vor.
Variable mixed-mode delamination in composite laminates under fatigue conditions: testing & analysis
Resumo:
La majoria de les fallades en elements estructurals són degudes a càrrega per fatiga. En conseqüència, la fatiga mecànica és un factor clau per al disseny d'elements mecànics. En el cas de materials compòsits laminats, el procés de fallada per fatiga inclou diferents mecanismes de dany que resulten en la degradació del material. Un dels mecanismes de dany més importants és la delaminació entre capes del laminat. En el cas de components aeronàutics, les plaques de composit estan exposades a impactes i les delaminacions apareixen facilment en un laminat després d'un impacte. Molts components fets de compòsit tenen formes corbes, superposició de capes i capes amb diferents orientacions que fan que la delaminació es propagui en un mode mixt que depen de la grandària de la delaminació. És a dir, les delaminacions generalment es propaguen en mode mixt variable. És per això que és important desenvolupar nous mètodes per caracteritzar el creixement subcrític en mode mixt per fatiga de les delaminacions. El principal objectiu d'aquest treball és la caracterització del creixement en mode mixt variable de les delaminacions en compòsits laminats per efecte de càrregues a fatiga. Amb aquest fi, es proposa un nou model per al creixement per fatiga de la delaminació en mode mixt. Contràriament als models ja existents, el model que es proposa es formula d'acord a la variació no-monotònica dels paràmetres de propagació amb el mode mixt observada en diferents resultats experimentals. A més, es du a terme un anàlisi de l'assaig mixed-mode end load split (MMELS), la característica més important del qual és la variació del mode mixt a mesura que la delaminació creix. Per a aquest anàlisi, es tenen em compte dos mètodes teòrics presents en la literatura. No obstant, les expressions resultants per l'assaig MMELS no són equivalents i les diferències entre els dos mètodes poden ser importants, fins a 50 vegades. Per aquest motiu, en aquest treball es porta a terme un anàlisi alternatiu més acurat del MMELS per tal d'establir una comparació. Aquest anàlisi alternatiu es basa en el mètode dels elements finits i virtual crack closure technique (VCCT). D'aquest anàlisi en resulten importants aspectes a considerar per a la bona caracterització de materials utilitzant l'assaig MMELS. Durant l'estudi s'ha dissenyat i construït un utillatge per l'assaig MMELS. Per a la caracterització experimental de la propagació per fatiga de delaminacions en mode mixt variable s'utilitzen diferents provetes de laminats carboni/epoxy essencialment unidireccionals. També es du a terme un anàlisi fractogràfic d'algunes de les superfícies de fractura per delaminació. Els resultats experimentals són comparats amb les prediccions del model proposat per la propagació per fatiga d'esquerdes interlaminars.
Resumo:
We consider a class of boundary integral equations that arise in the study of strongly elliptic BVPs in unbounded domains of the form $D = \{(x, z)\in \mathbb{R}^{n+1} : x\in \mathbb{R}^n, z > f(x)\}$ where $f : \mathbb{R}^n \to\mathbb{R}$ is a sufficiently smooth bounded and continuous function. A number of specific problems of this type, for example acoustic scattering problems, problems involving elastic waves, and problems in potential theory, have been reformulated as second kind integral equations $u+Ku = v$ in the space $BC$ of bounded, continuous functions. Having recourse to the so-called limit operator method, we address two questions for the operator $A = I + K$ under consideration, with an emphasis on the function space setting $BC$. Firstly, under which conditions is $A$ a Fredholm operator, and, secondly, when is the finite section method applicable to $A$?
Resumo:
In this paper we consider the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data, a problem which models, for example, outdoor sound propagation over inhomogeneous. at terrain. To achieve good approximation at high frequencies with a relatively low number of degrees of freedom, we propose a novel Galerkin boundary element method, using a graded mesh with smaller elements adjacent to discontinuities in impedance and a special set of basis functions so that, on each element, the approximation space contains polynomials ( of degree.) multiplied by traces of plane waves on the boundary. We prove stability and convergence and show that the error in computing the total acoustic field is O( N-(v+1) log(1/2) N), where the number of degrees of freedom is proportional to N logN. This error estimate is independent of the wavenumber, and thus the number of degrees of freedom required to achieve a prescribed level of accuracy does not increase as the wavenumber tends to infinity.
Resumo:
We consider a finite element approximation of the sixth order nonlinear degenerate parabolic equation ut = ?.( b(u)? 2u), where generically b(u) := |u|? for any given ? ? (0,?). In addition to showing well-posedness of our approximation, we prove convergence in space dimensions d ? 3. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. Finally some numerical experiments in one and two space dimensions are presented.
Resumo:
We consider the numerical treatment of second kind integral equations on the real line of the form ∅(s) = ∫_(-∞)^(+∞)▒〖κ(s-t)z(t)ϕ(t)dt,s=R〗 (abbreviated ϕ= ψ+K_z ϕ) in which K ϵ L_1 (R), z ϵ L_∞ (R) and ψ ϵ BC(R), the space of bounded continuous functions on R, are assumed known and ϕ ϵ BC(R) is to be determined. We first derive sharp error estimates for the finite section approximation (reducing the range of integration to [-A, A]) via bounds on (1-K_z )^(-1)as an operator on spaces of weighted continuous functions. Numerical solution by a simple discrete collocation method on a uniform grid on R is then analysed: in the case when z is compactly supported this leads to a coefficient matrix which allows a rapid matrix-vector multiply via the FFT. To utilise this possibility we propose a modified two-grid iteration, a feature of which is that the coarse grid matrix is approximated by a banded matrix, and analyse convergence and computational cost. In cases where z is not compactly supported a combined finite section and two-grid algorithm can be applied and we extend the analysis to this case. As an application we consider acoustic scattering in the half-plane with a Robin or impedance boundary condition which we formulate as a boundary integral equation of the class studied. Our final result is that if z (related to the boundary impedance in the application) takes values in an appropriate compact subset Q of the complex plane, then the difference between ϕ(s)and its finite section approximation computed numerically using the iterative scheme proposed is ≤C_1 [kh log〖(1⁄kh)+(1-Θ)^((-1)⁄2) (kA)^((-1)⁄2) 〗 ] in the interval [-ΘA,ΘA](Θ<1) for kh sufficiently small, where k is the wavenumber and h the grid spacing. Moreover this numerical approximation can be computed in ≤C_2 N logN operations, where N = 2A/h is the number of degrees of freedom. The values of the constants C1 and C2 depend only on the set Q and not on the wavenumber k or the support of z.
Resumo:
In this paper we propose and analyze a hybrid $hp$ boundary element method for the solution of problems of high frequency acoustic scattering by sound-soft convex polygons, in which the approximation space is enriched with oscillatory basis functions which efficiently capture the high frequency asymptotics of the solution. We demonstrate, both theoretically and via numerical examples, exponential convergence with respect to the order of the polynomials, moreover providing rigorous error estimates for our approximations to the solution and to the far field pattern, in which the dependence on the frequency of all constants is explicit. Importantly, these estimates prove that, to achieve any desired accuracy in the computation of these quantities, it is sufficient to increase the number of degrees of freedom in proportion to the logarithm of the frequency as the frequency increases, in contrast to the at least linear growth required by conventional methods.
Resumo:
We propose and analyse a hybrid numerical–asymptotic hp boundary element method (BEM) for time-harmonic scattering of an incident plane wave by an arbitrary collinear array of sound-soft two-dimensional screens. Our method uses an approximation space enriched with oscillatory basis functions, chosen to capture the high-frequency asymptotics of the solution. We provide a rigorous frequency-explicit error analysis which proves that the method converges exponentially as the number of degrees of freedom N increases, and that to achieve any desired accuracy it is sufficient to increase N in proportion to the square of the logarithm of the frequency as the frequency increases (standard BEMs require N to increase at least linearly with frequency to retain accuracy). Our numerical results suggest that fixed accuracy can in fact be achieved at arbitrarily high frequencies with a frequency-independent computational cost, when the oscillatory integrals required for implementation are computed using Filon quadrature. We also show how our method can be applied to the complementary ‘breakwater’ problem of propagation through an aperture in an infinite sound-hard screen.
Resumo:
MCNP has stood so far as one of the main Monte Carlo radiation transport codes. Its use, as any other Monte Carlo based code, has increased as computers perform calculations faster and become more affordable along time. However, the use of Monte Carlo method to tally events in volumes which represent a small fraction of the whole system may turn to be unfeasible, if a straight analogue transport procedure (no use of variance reduction techniques) is employed and precise results are demanded. Calculations of reaction rates in activation foils placed in critical systems turn to be one of the mentioned cases. The present work takes advantage of the fixed source representation from MCNP to perform the above mentioned task in a more effective sampling way (characterizing neutron population in the vicinity of the tallying region and using it in a geometric reduced coupled simulation). An extended analysis of source dependent parameters is studied in order to understand their influence on simulation performance and on validity of results. Although discrepant results have been observed for small enveloping regions, the procedure presents itself as very efficient, giving adequate and precise results in shorter times than the standard analogue procedure. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This work presents the positional nonlinear geometric formulation for trusses using different strain measures. The positional formulation presents an alternative approach for nonlinear problems. This formulation considers nodal positions as variables of the nonlinear system instead of displacements (widely found in literature). The work also describes the arc-length method used for tracing equilibrium paths with snap-through and snap-back. Numerical applications for trusses already established in the literature and comparisons with other studies are provided to prove the accuracy of the proposed formulation
Resumo:
This work presents an optimization technique based on structural topology optimization methods, TOM, designed to solve problems of thermoelasticity 3D. The presented approach is based on the adjoint method of sensitivity analysis unified design and is intended to loosely coupled thermomechanical problems. The technique makes use of analytical expressions of sensitivities, enabling a reduction in the computational cost through the use of a coupled field adjoint equation, defined in terms the of temperature and displacement fields. The TOM used is based on the material aproach. Thus, to make the domain is composed of a continuous distribution of material, enabling the use of classical models in nonlinear programming optimization problem, the microstructure is considered as a porous medium and its constitutive equation is a function only of the homogenized relative density of the material. In this approach, the actual properties of materials with intermediate densities are penalized based on an artificial microstructure model based on the SIMP (Solid Isotropic Material with Penalty). To circumvent problems chessboard and reduce dependence on layout in relation to the final optimal initial mesh, caused by problems of numerical instability, restrictions on components of the gradient of relative densities were applied. The optimization problem is solved by applying the augmented Lagrangian method, the solution being obtained by applying the finite element method of Galerkin, the process of approximation using the finite element Tetra4. This element has the ability to interpolate both the relative density and the displacement components and temperature. As for the definition of the problem, the heat load is assumed in steady state, i.e., the effects of conduction and convection of heat does not vary with time. The mechanical load is assumed static and distributed
Resumo:
The objective of this paper is the numerical study of the behavior of reinforced concrete beams and columns by non-linear numerical simulations. The numerical analysis is based on the finite element method implemented in CASTEM 2000. This program uses the constitutive elastoplastic perfect model for the steel, the Drucker-Prager model for the concrete and the Newton-Raphson for the solution of non-linear systems. This work concentrates on the determination of equilibrium curves to the beams and force-strain curves to the columns. The numeric responses are confronted with experimental results found in the literature in order to check there liability of the numerical analyses.
Resumo:
This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The effect of different anatomic shapes and materials of posts in the stress distribution on an endodontically treated incisor was evaluated in this work. This study compared three post shapes (tapered, cylindrical and two-stage cylindrical) made of three different materials (stainless steel, titanium and carbon fibre on Bisphenol A-Glycidyl Methacrylate (Bis-GMA) matrix). Two-dimensional stress analysis was performed using the Finite Element Method. A static load of 100N was applied at 45degrees inclination with respect to the incisor's edge. The stress concentrations did not significantly affect the region adjacent to the alveolar bone crest at the palatine portion of the tooth, regardless of the post shape or material. However, stress concentrations on the post/dentin interface on the palatine side of the tooth root presented significant variations for different post shapes and materials. Post shapes had relatively small impact on the stress concentrations while post materials introduced higher variations on them. Stainless steel posts presented the highest level of stress concentration, followed by titanium and carbon/Bis-GMA posts.
Resumo:
Pós-graduação em Engenharia Civil - FEIS