921 resultados para Non-linear mechanics
Resumo:
Stream ciphers are encryption algorithms used for ensuring the privacy of digital telecommunications. They have been widely used for encrypting military communications, satellite communications, pay TV encryption and for voice encryption of both fixed lined and wireless networks. The current multi year European project eSTREAM, which aims to select stream ciphers suitable for widespread adoptation, reflects the importance of this area of research. Stream ciphers consist of a keystream generator and an output function. Keystream generators produce a sequence that appears to be random, which is combined with the plaintext message using the output function. Most commonly, the output function is binary addition modulo two. Cryptanalysis of these ciphers focuses largely on analysis of the keystream generators and of relationships between the generator and the keystream it produces. Linear feedback shift registers are widely used components in building keystream generators, as the sequences they produce are well understood. Many types of attack have been proposed for breaking various LFSR based stream ciphers. A recent attack type is known as an algebraic attack. Algebraic attacks transform the problem of recovering the key into a problem of solving multivariate system of equations, which eventually recover the internal state bits or the key bits. This type of attack has been shown to be effective on a number of regularly clocked LFSR based stream ciphers. In this thesis, algebraic attacks are extended to a number of well known stream ciphers where at least one LFSR in the system is irregularly clocked. Applying algebriac attacks to these ciphers has only been discussed previously in the open literature for LILI-128. In this thesis, algebraic attacks are first applied to keystream generators using stop-and go clocking. Four ciphers belonging to this group are investigated: the Beth-Piper stop-and-go generator, the alternating step generator, the Gollmann cascade generator and the eSTREAM candidate: the Pomaranch cipher. It is shown that algebraic attacks are very effective on the first three of these ciphers. Although no effective algebraic attack was found for Pomaranch, the algebraic analysis lead to some interesting findings including weaknesses that may be exploited in future attacks. Algebraic attacks are then applied to keystream generators using (p; q) clocking. Two well known examples of such ciphers, the step1/step2 generator and the self decimated generator are investigated. Algebraic attacks are shown to be very powerful attack in recovering the internal state of these generators. A more complex clocking mechanism than either stop-and-go or the (p; q) clocking keystream generators is known as mutual clock control. In mutual clock control generators, the LFSRs control the clocking of each other. Four well known stream ciphers belonging to this group are investigated with respect to algebraic attacks: the Bilateral-stop-and-go generator, A5/1 stream cipher, Alpha 1 stream cipher, and the more recent eSTREAM proposal, the MICKEY stream ciphers. Some theoretical results with regards to the complexity of algebraic attacks on these ciphers are presented. The algebraic analysis of these ciphers showed that generally, it is hard to generate the system of equations required for an algebraic attack on these ciphers. As the algebraic attack could not be applied directly on these ciphers, a different approach was used, namely guessing some bits of the internal state, in order to reduce the degree of the equations. Finally, an algebraic attack on Alpha 1 that requires only 128 bits of keystream to recover the 128 internal state bits is presented. An essential process associated with stream cipher proposals is key initialization. Many recently proposed stream ciphers use an algorithm to initialize the large internal state with a smaller key and possibly publicly known initialization vectors. The effect of key initialization on the performance of algebraic attacks is also investigated in this thesis. The relationships between the two have not been investigated before in the open literature. The investigation is conducted on Trivium and Grain-128, two eSTREAM ciphers. It is shown that the key initialization process has an effect on the success of algebraic attacks, unlike other conventional attacks. In particular, the key initialization process allows an attacker to firstly generate a small number of equations of low degree and then perform an algebraic attack using multiple keystreams. The effect of the number of iterations performed during key initialization is investigated. It is shown that both the number of iterations and the maximum number of initialization vectors to be used with one key should be carefully chosen. Some experimental results on Trivium and Grain-128 are then presented. Finally, the security with respect to algebraic attacks of the well known LILI family of stream ciphers, including the unbroken LILI-II, is investigated. These are irregularly clock- controlled nonlinear filtered generators. While the structure is defined for the LILI family, a particular paramater choice defines a specific instance. Two well known such instances are LILI-128 and LILI-II. The security of these and other instances is investigated to identify which instances are vulnerable to algebraic attacks. The feasibility of recovering the key bits using algebraic attacks is then investigated for both LILI- 128 and LILI-II. Algebraic attacks which recover the internal state with less effort than exhaustive key search are possible for LILI-128 but not for LILI-II. Given the internal state at some point in time, the feasibility of recovering the key bits is also investigated, showing that the parameters used in the key initialization process, if poorly chosen, can lead to a key recovery using algebraic attacks.
Resumo:
With the increase in the level of global warming, renewable energy based distributed generators (DGs) will increasingly play a dominant role in electricity production. Distributed generation based on solar energy (photovoltaic and solar thermal), wind, biomass, mini-hydro along with use of fuel cells and micro turbines will gain considerable momentum in the near future. A microgrid consists of clusters of load and distributed generators that operate as a single controllable system. The interconnection of the DG to the utility/grid through power electronic converters has raised concern about safe operation and protection of the equipments. Many innovative control techniques have been used for enhancing the stability of microgrid as for proper load sharing. The most common method is the use of droop characteristics for decentralized load sharing. Parallel converters have been controlled to deliver desired real power (and reactive power) to the system. Local signals are used as feedback to control converters, since in a real system, the distance between the converters may make the inter-communication impractical. The real and reactive power sharing can be achieved by controlling two independent quantities, frequency and fundamental voltage magnitude. In this thesis, an angle droop controller is proposed to share power amongst converter interfaced DGs in a microgrid. As the angle of the output voltage can be changed instantaneously in a voltage source converter (VSC), controlling the angle to control the real power is always beneficial for quick attainment of steady state. Thus in converter based DGs, load sharing can be performed by drooping the converter output voltage magnitude and its angle instead of frequency. The angle control results in much lesser frequency variation compared to that with frequency droop. An enhanced frequency droop controller is proposed for better dynamic response and smooth transition between grid connected and islanded modes of operation. A modular controller structure with modified control loop is proposed for better load sharing between the parallel connected converters in a distributed generation system. Moreover, a method for smooth transition between grid connected and islanded modes is proposed. Power quality enhanced operation of a microgrid in presence of unbalanced and non-linear loads is also addressed in which the DGs act as compensators. The compensator can perform load balancing, harmonic compensation and reactive power control while supplying real power to the grid A frequency and voltage isolation technique between microgrid and utility is proposed by using a back-to-back converter. As utility and microgrid are totally isolated, the voltage or frequency fluctuations in the utility side do not affect the microgrid loads and vice versa. Another advantage of this scheme is that a bidirectional regulated power flow can be achieved by the back-to-back converter structure. For accurate load sharing, the droop gains have to be high, which has the potential of making the system unstable. Therefore the choice of droop gains is often a tradeoff between power sharing and stability. To improve this situation, a supplementary droop controller is proposed. A small signal model of the system is developed, based on which the parameters of the supplementary controller are designed. Two methods are proposed for load sharing in an autonomous microgrid in rural network with high R/X ratio lines. The first method proposes power sharing without any communication between the DGs. The feedback quantities and the gain matrixes are transformed with a transformation matrix based on the line R/X ratio. The second method involves minimal communication among the DGs. The converter output voltage angle reference is modified based on the active and reactive power flow in the line connected at point of common coupling (PCC). It is shown that a more economical and proper power sharing solution is possible with the web based communication of the power flow quantities. All the proposed methods are verified through PSCAD simulations. The converters are modeled with IGBT switches and anti parallel diodes with associated snubber circuits. All the rotating machines are modeled in detail including their dynamics.
Resumo:
An algorithm based on the concept of combining Kalman filter and Least Error Square (LES) techniques is proposed in this paper. The algorithm is intended to estimate signal attributes like amplitude, frequency and phase angle in the online mode. This technique can be used in protection relays, digital AVRs, DGs, DSTATCOMs, FACTS and other power electronics applications. The Kalman filter is modified to operate on a fictitious input signal and provides precise estimation results insensitive to noise and other disturbances. At the same time, the LES system has been arranged to operate in critical transient cases to compensate the delay and inaccuracy identified because of the response of the standard Kalman filter. Practical considerations such as the effect of noise, higher order harmonics, and computational issues of the algorithm are considered and tested in the paper. Several computer simulations and a laboratory test are presented to highlight the usefulness of the proposed method. Simulation results show that the proposed technique can simultaneously estimate the signal attributes, even if it is highly distorted due to the presence of non-linear loads and noise.
Resumo:
Advances in safety research—trying to improve the collective understanding of motor vehicle crash causation—rests upon the pursuit of numerous lines of inquiry. The research community has focused on analytical methods development (negative binomial specifications, simultaneous equations, etc.), on better experimental designs (before-after studies, comparison sites, etc.), on improving exposure measures, and on model specification improvements (additive terms, non-linear relations, etc.). One might think of different lines of inquiry in terms of ‘low lying fruit’—areas of inquiry that might provide significant improvements in understanding crash causation. It is the contention of this research that omitted variable bias caused by the exclusion of important variables is an important line of inquiry in safety research. In particular, spatially related variables are often difficult to collect and omitted from crash models—but offer significant ability to better understand contributing factors to crashes. This study—believed to represent a unique contribution to the safety literature—develops and examines the role of a sizeable set of spatial variables in intersection crash occurrence. In addition to commonly considered traffic and geometric variables, examined spatial factors include local influences of weather, sun glare, proximity to drinking establishments, and proximity to schools. The results indicate that inclusion of these factors results in significant improvement in model explanatory power, and the results also generally agree with expectation. The research illuminates the importance of spatial variables in safety research and also the negative consequences of their omissions.
Resumo:
As the use of renewable energy sources (RESs) increases worldwide, there is a rising interest on their impacts on power system operation and control. An overview of the key issues and new challenges on frequency regulation concerning the integration of renewable energy units into the power systems is presented. Following a brief survey on the existing challenges and recent developments, the impact of power fluctuation produced by variable renewable sources (such as wind and solar units) on sysstem frequency performance is also presented. An updated LFC model is introduced, and power system frequency response in the presence of RESs and associated issues is analysed. The need for the revising of frequency performance standards is emphasised. Finally, non-linear time-domain simulations on the standard 39-bus and 24-bus test systems show that the simulated results agree with those predicted analytically.
Resumo:
To maximise the capacity of the rail lineand provide a reliable service for pas-sengers throughout the day, regulation of train service to maintain steady service headway is es-sential. In most current metro systems, train usually starts coasting at a fixed distance from the departed station to achieve service regulation. However, this approach is only effective with re-spect to a nominal operational condition of train schedule but not necessarily the current service demand. Moreover, it is not simply to identify the necessary starting point for coasting under the run time constraints of current service conditions since train movement is attributed by a large number of factors, most of which are non-linear and inter-dependent. This paper presents an ap-plication of classical measures to search for the appropriate coasting point to meet a specified inter-station run time and they can be integrated in the on-board Automatic Train Operation (ATO) system and have the potential for on-line implementation in making a set of coasting command decisions.
Resumo:
Extensive groundwater withdrawal has resulted in a severe seawater intrusion problem in the Gooburrum aquifers at Bundaberg, Queensland, Australia. Better management strategies can be implemented by understanding the seawater intrusion processes in those aquifers. To study the seawater intrusion process in the region, a two-dimensional density-dependent, saturated and unsaturated flow and transport computational model is used. The model consists of a coupled system of two non-linear partial differential equations. The first equation describes the flow of a variable-density fluid, and the second equation describes the transport of dissolved salt. A two-dimensional control volume finite element model is developed for simulating the seawater intrusion into the heterogeneous aquifer system at Gooburrum. The simulation results provide a realistic mechanism by which to study the convoluted transport phenomena evolving in this complex heterogeneous coastal aquifer.
Resumo:
Balancing between the provision of high quality of service and running within a tight budget is one of the biggest challenges for most metro railway operators around the world. Conventionally, one possible approach for the operator to adjust the time schedule is to alter the stop time at stations, if other system constraints, such as traction equipment characteristic, are not taken into account. Yet it is not an effective, flexible and economical method because the run-time of a train simply cannot be extended without limitation, and a balance between run-time and energy consumption has to be maintained. Modification or installation of a new signalling system not only increases the capital cost, but also affects the normal train service. Therefore, in order to procure a more effective, flexible and economical means to improve the quality of service, optimisation of train performance by coasting point identification has become more attractive and popular. However, identifying the necessary starting points for coasting under the constraints of current service conditions is no simple task because train movement is attributed by a large number of factors, most of which are non-linear and inter-dependent. This paper presents an application of genetic algorithms (GA) to search for the appropriate coasting points and investigates the possible improvement on computation time and fitness of genes.
Resumo:
This study explores three-dimensional nonlineardynamic responses of typical tall buildings with and without setbacks under blast loading. These 20 storey reinforced concrete buildings have been designed for normal (dead, live and wind)loads. The influence of the setbacks on the lateral load response due to blasts in terms of peak deflections, accelerations, inter-storey drift and bending moments at critical locations (including hinge formation) were investigated. Structural response predictions were performed with a commercially available three-dimensional finite element analysis programme using non-linear direct integration time history analyses. Results obtained for buildings with different setbacks were compared and conclusions made. The comparisons revealed that buildings have setbacks that protect the tower part above the setback level from blast loading show considerably better response in terms of peak displacement and interstorey drift, when compared to buildings without setbacks. Rotational accelerations were found to depend on the periods of the rotational modes. Abrupt changes in moments and shears are experienced near the levels of the setbacks. Typical twenty storey tall buildings with shear walls and frames that are designed for only normaln loads perform reasonably well, without catastrophic collapse, when subjected to a blast that is equivalent to 500 kg TNT at a standoff distance of 10 m.
Resumo:
We present several new observations on the SMS4 block cipher, and discuss their cryptographic significance. The crucial observation is the existence of fixed points and also of simple linear relationships between the bits of the input and output words for each component of the round functions for some input words. This implies that the non-linear function T of SMS4 does not appear random and that the linear transformation provides poor diffusion. Furthermore, the branch number of the linear transformation in the key scheduling algorithm is shown to be less than optimal. The main security implication of these observations is that the round function is not always non-linear. Due to this linearity, it is possible to reduce the number of effective rounds of SMS4 by four. We also investigate the susceptibility of SMS4 to further cryptanalysis. Finally, we demonstrate a successful differential attack on a slightly modified variant of SMS4. These findings raise serious questions on the security provided by SMS4.
Resumo:
Level crossing crashes have been shown to result in enormous human and financial cost to society. According to the Australian Transport Safety Bureau (ATSB) [5] a total of 632 Railway Level crossing (RLX) collisions, between trains and road vehicles, occurred in Australia between 2001 and June 2009. The cost of RLX collisions runs into the tens of millions of dollars each year in Australia [6]. In addition, loss of life and injury are commonplace in instances where collisions occur. Based on estimates that 40% of rail related fatalities occur at level crossings [12], it is estimated that 142 deaths between 2001 and June 2009 occurred at RLX. The aim of this paper is to (i) summarise crash patterns in Australia, (ii) review existing international ITS interventions to improve level crossing and (iii) highlights open human factors research related issues. Human factors (e.g., driver error, lapses or violations) have been evidenced as a significant contributing factor in RLX collisions, with drivers of road vehicles particularly responsible for many collisions. Unintentional errors have been found to contribute to 46% of RLX collisions [6] and appear to be far more commonplace than deliberate violations. Humans have been found to be inherently inadequate at using the sensory information available to them to facilitate safe decision-making at RLX and tend to underestimate the speed of approaching large objects due to the non-linear increases in perceived size [6]. Collisions resulting from misjudgements of train approach speed and distance are common [20]. Thus, a fundamental goal for improved RLX safety is the provision of sufficient contextual information to road vehicle drivers to facilitate safe decision-making regarding crossing behaviours.
Resumo:
The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.