799 resultados para Non-insulin-dependent diabetes - Genetic aspects
Resumo:
Considering the growing importance of the interaction between components of kallikreinkinin and renin-angiotensin systems in physiological and pathological processes, particularly in diabetes mellitus, the aim of the present study was to investigate the effect of enalapril on the reduced response of bradykinin and on the interaction between angiotensin-(1-7) (Ang-(1-7)) and bradykinin (BK), important components of these systems, in an insulin-resistance model of diabetes. For the above purpose, the response of mesenteric arterioles of anesthetized neonatal streptozotocin-induced (n-STZ) diabetic and control rats was evaluated using intravital microscopy. In n-STZ diabetic rats, enalapril treatment restored the reduced response to BK but not the potentiation of BK by Ang-(1-7) present in non-diabetic rats. The restorative effect of enalapril was observed at a dose that did not correct the altered parameters induced by diabetes such as hyperglycernia, glicosuria, insulin resistance but did reduce the high blood pressure levels of n-SZT diabetic rats. There was no difference in mRNA and protein expressions of B1 and B2 kinin receptor subtypes between n-STZ diabetic and control rats. Enalapril treatment increased the B2 kinin receptor expression. From our data, we conclude that in diabetes enalapril corrects the impaired BK response probably by increasing the expression of B2 receptors. The lack of potentiation of BK by Ang-(1-7) is not corrected by this agent. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Background: Allergic lung inflammation is impaired in diabetic rats and is restored by insulin treatment. In the present study we investigated the effect of insulin on the signaling pathways triggered by allergic inflammation in the lung and the release of selected mediators. Methods: Diabetic male Wistar rats (alloxan, 42 mg/kg, i.v., 10 days) and matching controls were sensitized by s.c. injections of ovalbumin (OA) in aluminium hydroxide, 14 days before OA (1 mg/0.4 ml) or saline intratracheal challenge. A group of diabetic rats were treated with neutral protamine Hagedorn insulin (NPH, 4 IU, s.c.), 2 h before the OA challenge. Six hours after the challenge, bronchoalveolar lavage (BAL) was performed for mediator release and lung tissue was homogenized for Western blotting analysis of signaling pathways. Results: Relative to non-diabetic rats, the diabetic rats exhibited a significant reduction in OA-induced phosphorylation of the extracellular signal-regulated kinase (ERK, 59%), p38 (53%), protein kinase B (Akt, 46%), protein kinase C (PKC)-alpha (63%) and PKC-delta (38%) in lung homogenates following the antigen challenge. Activation of the NF-kappa B p65 subunit and phosphorylation of I kappa B alpha were almost suppressed in diabetic rats. Reduced expression of inducible nitric oxide synthase (iNOS, 32%) and cyclooxygenase-2 (COX-2, 46%) in the lung homogenates was also observed. The BAL concentration of prostaglandin (PG)-E(2), nitric oxide (NO) and interleukin (IL)-6 was reduced in diabetic rats (74%, 44% and 65%, respectively), whereas the cytokine-induced neutrophil chemoattractant (CINC)-2 concentration was not different from the control animals. Treatment of diabetic rats with insulin completely or partially restored all of these parameters. This protocol of insulin treatment only partially reduced the blood glucose levels. Conclusion: The data presented show that insulin regulates MAPK, PI3K, PKC and NF-kappa B pathways, the expression of the inducible enzymes iNOS and COX-2, and the levels of NO, PGE(2) and IL-6 in the early phase of allergic lung inflammation in diabetic rats. It is suggested that insulin is required for optimal transduction of the intracellular signals that follow allergic stimulation. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Antigen-presenting cells (APCs) control T-cell responses by multiple mechanisms, including the expression of co-stimulatory molecules and the production of cytokines and other mediators that control T-cell proliferation, survival and differentiation. Here, we demonstrate that soluble factor(s) produced by Toll-like receptor (TLR)-activated APCs suppress activation-induced cell death (AICD). This effect was observed in non-stimulated APCs, but it was significantly increased after lipopolysaccharide (LPS) treatment. Using different KO mice, we found that the LPS-induced protective factor is dependent on TLR4/MyD88. We identified the protective factor as prostaglandin E-2(PGE(2)) and showed that both APC-derived supernatants and PGE(2) prevented CD95L upregulation in T cells in response to TCR/CD3 stimulation, thereby avoiding both AICD and activated T cell killing of target macrophages. The PGE(2) receptors, EP2 and EP4, appear to be involved since pharmacological stimulation of these receptors mimics the protective effect on T cells and their respective antagonists interfere with the protection induced by either APCs derived or synthetic PGE(2). Finally, the engagement of EP2 and EP4 synergistically activates protein kinase A (PKA) and exchange protein directly activated by cAMP pathways to prevent AICD. Taken together, these results indicate that APCs can regulate T-cell levels of CD95L by releasing PGE2 in response to LPS through a TLR4/MyD88-dependent pathway, with consequences for both T cell and their own survival.
Resumo:
Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca(2+) signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca(2+) signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally, we explored the status of Ca(2+)-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase C alpha as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the beta-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity. (Endocrinology 151: 85-95, 2010)
Resumo:
Introdução: A retinopatia diabética (RD) é a principal causa de novos casos de cegueira entre norte-americanos em idade produtiva. Existe uma associação entre RD e as outras complicações microvasculares do diabete melito. A associação da RD com a fase inicial da nefropatia, a microalbuminúria, não está esclarecida em pacientes com diabete melito (DM) tipo 2. Polimorfismos de genes (ENNP1; FABP2) relacionados à resistência insulínica, entre outros, poderiam estar associados à RD. Objetivo: O objetivo deste estudo foi avaliar fatores genéticos e não genéticos associados à RD avançada em pacientes com DM tipo 2. Métodos: Neste estudo caso-controle foram incluídos pacientes DM tipo 2 submetidos à avaliação clínica, laboratorial e oftalmológica. Foi realizada oftalmoscopia binocular indireta sob midríase e obtidas retinografias coloridas em 7 campos padronizados. Foram classificados como casos os pacientes portadores de RD avançada (formas graves de RD não proliferativa e RD proliferativa) e como controles os pacientes sem RD avançada (fundoscopia normal, e outras formas de RD). Foram estudados os polimorfismos K121Q do gene ENNP1 e A54T do gene FABP2. Na análise estatística foram utilizados testes paramétricos e não paramétricos conforme indicado. Foi realizada análise de regressão logística múltipla para avaliar fatores associados à RD avançada. O nível de significância adotado foi de 0,05%. Resultados: Foram avaliados 240 pacientes com DM tipo 2 com 60,6 ± 8,4 anos de idade e duração conhecida de DM de 14,4 ± 8,4 anos. Destes, 67 pacientes (27,9%) apresentavam RD avançada. Os pacientes com RD avançada apresentaram maior duração conhecida de DM (18,1 ± 8,1 vs. 12,9 ± 8,2 anos; P< 0,001), menor índice de massa corporal (IMC) (27,5 ± 4,2 vs. 29,0 ± 9,6 kg/m2; P= 0,019), além de uso de insulina mais freqüente (70,8% vs 35,3%; P< 0,001) e presença de nefropatia diabética (81,1% vs 34,8%; P< 0,001) quando comparados com os pacientes sem RD avançada. Na avaliação laboratorial os pacientes com RD avançada apresentaram valores mais elevados de creatinina sérica [1,4 (0,6 -13,6) vs 0,8 (0,5-17,9) mg/dl; P<0,001] e de albuminúria [135,0 (3,6-1816,0) vs 11,3 (1,5-5105,0) μg/min; P<0,001] quando comparados com pacientes sem RD avançada. A distribuição dos genótipos dos polimorfismos do ENNP1 e FABP2 não foi diferente entre os grupos. A análise de regressão logística múltipla demonstrou que a presença de nefropatia (OR=6,59; IC95%: 3,01-14,41; P<0,001) e o uso de insulina (OR=3,47; IC95%: 1,60- 7,50; P=0,002) foram os fatores associados à RD avançada, ajustados para a duração de DM, presença de hipertensão arterial, glicohemoglobina e IMC. Quando na análise foram incluídos apenas pacientes normoalbuminúricos e microalbuminúricos, a microalbuminúria (OR=3,8; IC95%: 1,38-10,47; P=0,010), o uso de insulina (OR=5,04; IC95%: 1,67-15,21; P=0,004), a duração do DM (OR=1,06 IC95%: 1,00-1,13; P=0,048) e a glicohemoglobina (OR=1,35; IC95%: 1,02-1,79; P=0,034) foram os fatores associados à RD avançada, ajustados para a presença de hipertensão arterial e IMC. Conclusão: Pacientes com DM tipo 2 portadores de formas avançadas de RD apresentam mais freqüentemente envolvimento renal pelo DM, incluindo o estágio de microalbuminúria. Uma avaliação renal com medida de albuminúria dever ser incorporada como avaliação de rotina nestes pacientes.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The NADPH-diaphorase (NADPH-d) positive myoenteric neurons from the body of the stomach of rats with streptozotocin-induced diabetes with or without supplementation with acetyl-L-carnitine (ALC) were evaluated. At the age of 105 days the animals were divided into four groups: normoglycaemic (C), normoglycaemic supplemented with ALC (CC), diabetic (D) and diabetic supplemented with ALC (DC). The supplementation with ALC (200 mg/kg body weight/day) to groups CC and DC was made during 105 days. After this period the animals were killed and the stomach removed and subjected to the histochemical technique of NADPH-d for the staining of the neurons of the myoenteric plexus. The area of 500 neurons of each group was investigated, as well as the neuronal density in an area of 23.84 mm(2) in each stomach. ALC promoted reduction (P < 0.05) of fasting glycaemia, water ingestion and areas of the profiles of the cell bodies of the NADPH-d neurons in the diabetic animals. The density of these neurons was not statistically different in the groups studied. It is suggested, therefore, a moderate neuroprotective effect of ALC, because the diminishment of the areas of the neuronal profiles in the supplemented diabetic animals, although being statistically significant relative to the non-supplemented diabetics, was not sufficient to equal the values from the non-diabetic controls.
Resumo:
Aims: The effects of glargine insulin therapy in pregnancies are not well established. We compared maternal and neonatal outcomes of women with pregestational and gestational diabetes treated with glargine or NPH insulin.Methods: A prospective cohort study was conducted analyzing outcomes from 56 women with pregestational and 82 with gestational diabetes treated with either insulin regimen.Results: Comparisons were performed among 138 women: 56 with pregestational and 82 with gestational diabetes. In relation to maternal complications, worsening of retinopathy and nephropathy, preeclampsia, micro and macroalbuminuria, and all kinds of hypoglycemia were found higher in women with pregestational diabetes NPH-treated vs. glargine-treated. In women with gestational diabetes NPH-treated, it was observed increased incidence of prepregnancy and new-onset pregnancy hypertension, micro and macroalbuminuria, as well as mild and frequent hypoglycemia, compared to glargine-treated. Among the neonatal outcomes, 1-min Apgar score <7, necessity of intensive care unit and fetal death in pregestational, while jaundice and congenital malformations in gestational diabetes, respectively, were more frequently observed in infants born to NPH-treated, compared to glargine-treated.Conclusions: Glargine use during pregnancy from preconception through delivery, showed to be safe since it is associated with decreased maternal and neonatal adverse outcomes compared with NPH insulin-treated patients. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Objectives: We have analyzed the peripheral insulin and glucose sensitivity in vivo, and islet function ex vivo in rats with different degrees of insulin resistance induced by dexamethasone (DEX).Methods: Dexamethasone, in the concentrations of 0.1 (DEX 0.1), 0.5 (DEX 0.5), and 1.0 mg/kg body weight (DEX 1.0) was administered daily, intraperitoneally, to adult Wistar rats for 5 days, whereas controls received saline.Results: Dexamethasone treatment induced peripheral insulin resistance in a dose-dependent manner. At the end of the treatment, only DEX 1.0 rats showed significant increase of postabsorptive blood glucose and serum triglycerides, and nonesterified fatty acids levels. Incubation of pancreatic islets in increasing glucose concentrations (2.8-22 mM) led to an augmented insulin secretion in all DEX-treated rats. Leucine, carbachol, and high KCl concentrations induced the insulin release in DEX 0.5 and DEX 1.0, whereas arginine augmented secretion in all DEX-treated groups.Conclusions: We demonstrate that in DEX 0.5 and, especially in DEX 0.1 groups, but not in DEX 1.0, the adaptations that occurred in the endocrine pancreas are able to counteract metabolic disorders (glucose intolerance and dyslipidemia). These animal models seem to be interesting approaches for the study of degrees of subjacent effects that may mediate type 2 diabetes (DEX 1.0) and islet function alterations, without collateral effects (DEX 0.1 and DEX 0.5).
Resumo:
We present a new procedure to construct the one-dimensional non-Hermitian imaginary potential with a real energy spectrum in the context of the position-dependent effective mass Dirac equation with the vector-coupling scheme in 1 + 1 dimensions. In the first example, we consider a case for which the mass distribution combines linear and inversely linear forms, the Dirac problem with a PT-symmetric potential is mapped into the exactly solvable Schrodinger-like equation problem with the isotonic oscillator by using the local scaling of the wavefunction. In the second example, we take a mass distribution with smooth step shape, the Dirac problem with a non-PT-symmetric imaginary potential is mapped into the exactly solvable Schrodinger-like equation problem with the Rosen-Morse potential. The real relativistic energy levels and corresponding wavefunctions for the bound states are obtained in terms of the supersymmetric quantum mechanics approach and the function analysis method.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of the present study was to use the comet assay to evaluate the steady-state level of DNA damage in peripheral blood leukocytes from diabetic and non-diabetic female Wistar rats exposed to air or to cigarette smoke. A total of 20 rats were distributed into four experimental groups (n= 5 rats/group): non-diabetic (control) and diabetic exposed to filtered air; non-diabetic and diabetic exposed to cigarette smoke. A pancreatic beta (beta)-cytotoxic agent, streptozotocin (40 mg/kg b.w.) was used to induce experimental diabetes in rats. Rats placed into whole-body exposure chambers were exposed for 30 min to filtered air (control) or to tobacco smoke generated from 10 cigarettes, twice a day, for 2 months. At the end of the 2-month exposure period, each rat was anesthetized and humanely killed to obtain blood samples for genotoxicity analysis using the alkaline comet assay. Blood wleukocytes sampled from diabetic rats presented higher DNA damage values (tail moment =0.57 +/- 0.05; tail length =19.92 +/- 0.41, p < 0.05) compared to control rats (tail moment =0.34 +/- 0.02; tail length= 17.42 +/- 0.33). Non-diabetic (tail moment =0.43 +/- 0.04, p > 0.05) and diabetic rats (tail moment= 0.41 +/- 0.03, p > 0.05) exposed to cigarette smoke presented non-significant increases in DNA damage levels compared to control group. In conclusion, our data show that the exposure of diabetic rats to cigarette smoke produced no additional genotoxicity in peripheral blood cells of female Wistar rats. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
dThe objective of the present study was to evaluate DNA damage level in blood leukocytes from diabetic and non-diabetic female Wistar rats exposed to air or to cigarette smoke, and to correlate the findings with levels of DNA damage detected in blood leukocyte samples from their fetuses. A total of 20 rats were distributed into four experimental groups: non-diabetic (control; G1) and diabetic exposed to filtered air (G2): non-diabetic (G3) and diabetic (G4) exposed to cigarette smoke. Rats placed into whole-body exposure chambers were exposed for 30 min to filtered air (control) or to tobacco smoke generated from 10 cigarettes, twice a day, for 2 months. Diabetes was induced by a pancreatic beta-cytotoxic agent, streptozotocin (40 mg/kg b.w.). At day 21 of pregnancy, each rat was anesthetized and humanely killed to obtain maternal and fetal blood samples for genotoxicity analysis using the alkaline comet assay. G2, G3 and G4 dams presented higher DNA damage values in tail moment and tail length as compared to G1 group. There was a significant positive correlation between DNA damage levels in blood leukocyte samples from G2 and G3 groups (tail moment); G3 and G4 groups (tail length) and G3 group (tail intensity) and their fetuses. Thus, this study showed the association of severe diabetes and tobacco cigarette smoke exposure did not exacerbate levels of maternal and fetal DNA damages related with only diabetes or cigarette smoke exposure. Based on the results obtained and taking into account other published data, maternal diabetes requires rigid clinical control and public health and education campaigns should be increased to encourage individuals, especially pregnant women, to stop smoking. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A proposição foi realizada, no período pós-operatório imediato, em 40 ratos Wistar, distribuídos por sorteio em doi grupos: grupo NC, vinte ratos correspondentes ao grupo controle, não diabético, submetidos a operação simulada e o grupo PT, 20 ratos correspondentes ao grupo diabético que recebeu transplante de pâncreas heterotópico de ratos Wistar normais. Durante sete dias, antes do transplante, e 1, 3, 6, 12, 24, 48, 72, 96 horas após, determinava-se a glicose sanguínea, a insulina plasnática e o glucagon. Estes parâmetros eram obtidos também do grupo NC. Diabetes mellitus experimental era induzida pela administração intravenosa de aloxana. O grupo PT era imunosuprimido com ciclosporina A. O grupo NC apresentou níveis normais de glicose sanguínea, de insulina plásmica e de glucagon, durante todo o experimento. Foi encontrada nítida hiperinsulinemia no sangue venoso periférico do grupo PT. A insulina plasmática era significantemente maior no grupo PT comparada ao grupo NC começando 72 horas após o transplante. O glucagon plasmático, elevado no período pré-transplante, não se alterou após o transplante. Apesar de hiperinsulinemia e hiperglucagonemia, os níveis de glicose sanguínea eram elevados 6 horas após o transplante e mantiveram-se normais após este período. Considerando-se os níveis de glicose sanguínea 12 horas pós-transplante, não houve diferença estatisticamente significante entre os grupos PT e NC, até o sacrifício.