891 resultados para Network deployment methods
Resumo:
Estimating energy requirements is necessary in clinical practice when indirect calorimetry is impractical. This paper systematically reviews current methods for estimating energy requirements. Conclusions include: there is discrepancy between the characteristics of populations upon which predictive equations are based and current populations; tools are not well understood, and patient care can be compromised by inappropriate application of the tools. Data comparing tools and methods are presented and issues for practitioners are discussed. (C) 2003 International Life Sciences Institute.
Resumo:
Taking functional programming to its extremities in search of simplicity still requires integration with other development (e.g. formal) methods. Induction is the key to deriving and verifying functional programs, but can be simplified through packaging proofs with functions, particularly folds, on data (structures). Totally Functional Programming avoids the complexities of interpretation by directly representing data (structures) as platonic combinators - the functions characteristic to the data. The link between the two simplifications is that platonic combinators are a kind of partially-applied fold, which means that platonic combinators inherit fold-theoretic properties, but with some apparent simplifications due to the platonic combinator representation. However, despite observable behaviour within functional programming that suggests that TFP is widely-applicable, significant work remains before TFP as such could be widely adopted.
Resumo:
Spatial data has now been used extensively in the Web environment, providing online customized maps and supporting map-based applications. The full potential of Web-based spatial applications, however, has yet to be achieved due to performance issues related to the large sizes and high complexity of spatial data. In this paper, we introduce a multiresolution approach to spatial data management and query processing such that the database server can choose spatial data at the right resolution level for different Web applications. One highly desirable property of the proposed approach is that the server-side processing cost and network traffic can be reduced when the level of resolution required by applications are low. Another advantage is that our approach pushes complex multiresolution structures and algorithms into the spatial database engine. That is, the developer of spatial Web applications needs not to be concerned with such complexity. This paper explains the basic idea, technical feasibility and applications of multiresolution spatial databases.
Resumo:
Objective: The Assessing Cost-Effectiveness - Mental Health (ACE-MH) study aims to assess from a health sector perspective, whether there are options for change that could improve the effectiveness and efficiency of Australia's current mental health services by directing available resources toward 'best practice' cost-effective services. Method: The use of standardized evaluation methods addresses the reservations expressed by many economists about the simplistic use of League Tables based on economic studies confounded by differences in methods, context and setting. The cost-effectiveness ratio for each intervention is calculated using economic and epidemiological data. This includes systematic reviews and randomised controlled trials for efficacy, the Australian Surveys of Mental Health and Wellbeing for current practice and a combination of trials and longitudinal studies for adherence. The cost-effectiveness ratios are presented as cost (A$) per disability-adjusted life year (DALY) saved with a 95% uncertainty interval based on Monte Carlo simulation modelling. An assessment of interventions on 'second filter' criteria ('equity', 'strength of evidence', 'feasibility' and 'acceptability to stakeholders') allows broader concepts of 'benefit' to be taken into account, as well as factors that might influence policy judgements in addition to cost-effectiveness ratios. Conclusions: The main limitation of the study is in the translation of the effect size from trials into a change in the DALY disability weight, which required the use of newly developed methods. While comparisons within disorders are valid, comparisons across disorders should be made with caution. A series of articles is planned to present the results.
Resumo:
Antigen recognition by cytotoxic CD8 T cells is dependent upon a number of critical steps in MHC class I antigen processing including proteosomal cleavage, TAP transport into the endoplasmic reticulum, and MHC class 1 binding. Based on extensive experimental data relating to each of these steps there is now the capacity to model individual antigen processing steps with a high degree of accuracy. This paper demonstrates the potential to bring together models of individual antigen processing steps, for example proteosome cleavage, TAP transport, and MHC binding, to build highly informative models of functional pathways. In particular, we demonstrate how an artificial neural network model of TAP transport was used to mine a HLA-binding database so as to identify H LA-binding peptides transported by TAP. This integrated model of antigen processing provided the unique insight that HLA class I alleles apparently constitute two separate classes: those that are TAP-efficient for peptide loading (HLA-B27, -A3, and -A24) and those that are TAP-inefficient (HLA-A2, -B7, and -B8). Hence, using this integrated model we were able to generate novel hypotheses regarding antigen processing, and these hypotheses are now capable of being tested experimentally. This model confirms the feasibility of constructing a virtual immune system, whereby each additional step in antigen processing is incorporated into a single modular model. Accurate models of antigen processing have implications for the study of basic immunology as well as for the design of peptide-based vaccines and other immunotherapies. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
UV-VIS-Spectrophotometric and spectrofluorimetric methods have been developed and validated allowing the quantification of chloroaluminum phthalocyanine (CIAIPc) in nanocarriers. In order to validate the methods, the linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy, and selectivity were examined according to USP 30 and ICH guidelines. Linearities range were found between 0.50-3.00 mu g.mL(-1) (Y=0.3829 X [CIAIPc, mu g.mL(-1)] + 0.0126; r=0.9992) for spectrophotometry, and 0.05-1.00 mu g.mL(-1) (Y=2.24 x 10(6) X [CIAIPc, mu g.L(-1)] + 9.74 x 10(4); r=0.9978) for spectrofluorimetry. In addition, ANOVA and Lack-of-fit tests demonstrated that the regression equations were statistically significant (p<0.05), and the resulting linear model is fully adequate for both analytical methods. The LOD values were 0.09 and 0.01 mu g.mL(-1), while the LOCI were 0.27 and 0.04 mu g.mL(-1) for spectrophotometric and spectrofluorimetric methods, respectively. Repeatability and intermediate precision for proposed methods showed relative standard deviation (RSD) between 0.58% to 4.80%. The percent recovery ranged from 98.9% to 102.7% for spectrophotometric analyses and from 94.2% to 101.2% for spectrofluorimetry. No interferences from common excipients were detected and both methods were considered specific. Therefore, the methods are accurate, precise, specific, and reproducible and hence can be applied for quantification of CIAIPc in nanoemulsions (NE) and nanocapsules (NC).
Resumo:
Through the study of the action of the inquisition commissioners, this article seeks to reveal the relations between the Portuguese Inquisition and the ecclesiastical structure of the Minas Gerais State Captaincy in the colonial period. The focus of the analysis will be the making and the action of the network of Holy Inquisition commissioners in the gold Captaincy. What was the profile of these commissioners? How were they recruited from the local ecclesiastical hierarchy? What was the role assigned to them in the inquisitional action that took place in Minas Gerais? How did they act? What was the relationship between the introduction of the commissioners into the local ecclesiastical structures and the commissioners` inquisitorial activities?
Resumo:
Mental rotation involves the creation and manipulation of internal images, with the later being particularly useful cognitive capacities when applied to high-level mathematical thinking and reasoning. Many neuroimaging studies have demonstrated mental rotation to be mediated primarily by the parietal lobes, particularly on the right side. Here, we use fMRI to show for the first time that when performing 3-dimensional mental rotations, mathematically gifted male adolescents engage a qualitatively different brain network than those of average math ability, one that involves bilateral activation of the parietal lobes and frontal cortex, along with heightened activation of the anterior cingulate. Reliance on the processing characteristics of this uniquely bilateral system and the interplay of these anterior/posterior regions may be contributors to their mathematical precocity.
Resumo:
Methods. Data from the Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) study, a prospective observational study from 54 ICUs in 23 countries of critically ill patients with severe AKI, were analysed. The RIFLE class was determined by using observed (o) pre-morbid and estimated (e) baseline SCr values. Agreement was evaluated by correlation coefficients and Bland-Altman plots. Sensitivity analysis by chronic kidney disease (CKD) status was performed. Results. Seventy-six percent of patients (n = 1327) had a pre-morbid baseline SCr, and 1314 had complete data for evaluation. Forty-six percent had CKD. The median (IQR) values were 97 mu mol/L (79-150) for oSCr and 88 mu mol/L (71-97) for eSCr. The oSCr and eSCr determined at ICU admission and at study enrolment showed only a modest correlation (r = 0.49, r = 0.39). At ICU admission and study enrolment, eSCr misclassified 18.8% and 11.7% of patients as having AKI compared with oSCr. Exclusion of CKD patients improved the correlation between oSCr and eSCr at ICU admission and study enrolment (r = 0.90, r = 0.84) resulting in 6.6% and 4.0% being misclassified, respectively. Conclusions. While limited, estimating baseline SCr by the MDRD equation when pre-morbid SCr is unavailable would appear to perform reasonably well for determining the RIFLE categories only if and when pre-morbid GFR was near normal. However, in patients with suspected CKD, the use of MDRD to estimate baseline SCr overestimates the incidence of AKI and should not likely be used. Improved methods to estimate baseline SCr are needed.
Resumo:
Individuals with Autism Spectrum Disorder (ASD) are generally thought to have impaired attentional and executive function upon which all their cognitive and behaviour functions are based. Mental Rotation is a recognized visuo-spatial task, involving spatial working memory, known to involve activation in the fronto-parietal networks. To elucidate the functioning of fronto-parietal networks in ASD, the aim of this study was to use fMRI techniques with a mental rotation task, to characterize the underlying functional neural system. Sixteen male participants (seven highfunctioning autism or Asperger's syndrome; nine ageand performance IQ-matched controls) underwent fMRI. Participants were presented with 18 baseline and 18 rotation trials, with stimuli rotated 3- dimensionaUy (45°-180°). Data were acquired on a 3- Tesla scanner. The most widely accepted area reported to be involved in processing of visuo-spatial information. Posterior Parietal Cortex, was found to be activated in both groups, however, the ASD group showed decreased activation in cortical and subcortical frontal structures that are highly interconnected, including lateral and medial Brodmann area 6, frontal eye fields, caudate, dorsolateral prefrontal cortex and anterior cingulate. The suggested connectivity between these regions indicates that one or more circuits are impaired as a result of the disorder. In future it is hoped that we are able to identify the possible point of origin of this dysfunction, or indeed if the entire network is dysfunctional.
Resumo:
Anemia screening before blood donation requires an accurate, quick, practical, and easy method with minimal discomfort for the donors. The aim of this study was to compare the accuracy of two quantitative methods of anemia screening: the HemoCue 201(+) (Aktiebolaget Leo Diagnostics) hemoglobin (Hb) and microhematocrit (micro-Hct) tests. Two blood samples of a single fingerstick were obtained from 969 unselected potential female donors to determine the Hb by HemoCue 201(+) and micro-Hct using HemataSTAT II (Separation Technology, Inc.), in alternating order. From each participant, a venous blood sample was drawn and run in an automatic hematology analyzer (ABX Pentra 60, ABX Diagnostics). Considering results of ABX Pentra 60 as true values, the sensitivity and specificity of HemoCue 201(+) and micro-Hct as screening methods were compared, using a venous Hb level of 12.0 g per dL as cutoff for anemia. The sensitivities of the HemoCue 201(+) and HemataSTAT II in detecting anemia were 56 percent (95% confidence interval [CI], 46.1%-65.5%) and 39.5 percent (95% CI, 30.2%-49.3%), respectively (p < 0.001). Analyzing only candidates with a venous Hb level lower than 11.0 g per dL, the deferral rate was 100 percent by HemoCue 201(+) and 77 percent by HemataSTAT II. The specificities of the methods were 93.5 and 93.2 percent, respectively. The HemoCue 201(+) showed greater discriminating power for detecting anemia in prospective blood donors than the micro-Hct method. Both presented equivalent deferral error rates of nonanemic potential donors. Compared to the micro-Hct, HemoCue 201(+) reduces the risk of anemic female donors giving blood, specially for those with lower Hb levels, without increasing the deferral of nonanemic potential donors.
Resumo:
This special issue represents a further exploration of some issues raised at a symposium entitled “Functional magnetic resonance imaging: From methods to madness” presented during the 15th annual Theoretical and Experimental Neuropsychology (TENNET XV) meeting in Montreal, Canada in June, 2004. The special issue’s theme is methods and learning in functional magnetic resonance imaging (fMRI), and it comprises 6 articles (3 reviews and 3 empirical studies). The first (Amaro and Barker) provides a beginners guide to fMRI and the BOLD effect (perhaps an alternative title might have been “fMRI for dummies”). While fMRI is now commonplace, there are still researchers who have yet to employ it as an experimental method and need some basic questions answered before they venture into new territory. This article should serve them well. A key issue of interest at the symposium was how fMRI could be used to elucidate cerebral mechanisms responsible for new learning. The next 4 articles address this directly, with the first (Little and Thulborn) an overview of data from fMRI studies of category-learning, and the second from the same laboratory (Little, Shin, Siscol, and Thulborn) an empirical investigation of changes in brain activity occurring across different stages of learning. While a role for medial temporal lobe (MTL) structures in episodic memory encoding has been acknowledged for some time, the different experimental tasks and stimuli employed across neuroimaging studies have not surprisingly produced conflicting data in terms of the precise subregion(s) involved. The next paper (Parsons, Haut, Lemieux, Moran, and Leach) addresses this by examining effects of stimulus modality during verbal memory encoding. Typically, BOLD fMRI studies of learning are conducted over short time scales, however, the fourth paper in this series (Olson, Rao, Moore, Wang, Detre, and Aguirre) describes an empirical investigation of learning occurring over a longer than usual period, achieving this by employing a relatively novel technique called perfusion fMRI. This technique shows considerable promise for future studies. The final article in this special issue (de Zubicaray) represents a departure from the more familiar cognitive neuroscience applications of fMRI, instead describing how neuroimaging studies might be conducted to both inform and constrain information processing models of cognition.