954 resultados para Natural language processing systems
Resumo:
Nonlinear instabilities are responsible for spontaneous pattern formation in a vast number of natural and engineered systems, ranging from biology to galaxy buildup. We propose a new instability mechanism leading to pattern formation in spatially extended nonlinear systems, which is based on a periodic antiphase modulation of spectrally dependent losses arranged in a zigzag way: an effective filtering is imposed at symmetrically located wave numbers k and -k in alternating order. The properties of the dissipative parametric instability differ from the features of both key classical concepts of modulation instabilities, i.e., the Benjamin-Feir instability and the Faraday instabiltyity. We demonstrate how the dissipative parametric instability can lead to the formation of stable patterns in one- and two-dimensional systems. The proposed instability mechanism is generic and can naturally occur or can be implemented in various physical systems.
Resumo:
It is generally assumed when using Bayesian inference methods for neural networks that the input data contains no noise. For real-world (errors in variable) problems this is clearly an unsafe assumption. This paper presents a Bayesian neural network framework which accounts for input noise provided that a model of the noise process exists. In the limit where the noise process is small and symmetric it is shown, using the Laplace approximation, that this method adds an extra term to the usual Bayesian error bar which depends on the variance of the input noise process. Further, by treating the true (noiseless) input as a hidden variable, and sampling this jointly with the network’s weights, using a Markov chain Monte Carlo method, it is demonstrated that it is possible to infer the regression over the noiseless input. This leads to the possibility of training an accurate model of a system using less accurate, or more uncertain, data. This is demonstrated on both the, synthetic, noisy sine wave problem and a real problem of inferring the forward model for a satellite radar backscatter system used to predict sea surface wind vectors.
Resumo:
Diffusion processes are a family of continuous-time continuous-state stochastic processes that are in general only partially observed. The joint estimation of the forcing parameters and the system noise (volatility) in these dynamical systems is a crucial, but non-trivial task, especially when the system is nonlinear and multimodal. We propose a variational treatment of diffusion processes, which allows us to compute type II maximum likelihood estimates of the parameters by simple gradient techniques and which is computationally less demanding than most MCMC approaches. We also show how a cheap estimate of the posterior over the parameters can be constructed based on the variational free energy.
Resumo:
Over recent years, evidence has been accumulating in favour of the importance of long-term information as a variable which can affect the success of short-term recall. Lexicality, word frequency, imagery and meaning have all been shown to augment short term recall performance. Two competing theories as to the causes of this long-term memory influence are outlined and tested in this thesis. The first approach is the order-encoding account, which ascribes the effect to the usage of resources at encoding, hypothesising that word lists which require less effort to process will benefit from increased levels of order encoding, in turn enhancing recall success. The alternative view, trace redintegration theory, suggests that order is automatically encoded phonologically, and that long-term information can only influence the interpretation of the resultant memory trace. The free recall experiments reported here attempted to determine the importance of order encoding as a facilitatory framework and to determine the locus of the effects of long-term information in free recall. Experiments 1 and 2 examined the effects of word frequency and semantic categorisation over a filled delay, and experiments 3 and 4 did the same for immediate recall. Free recall was improved by both long-term factors tested. Order information was not used over a short filled delay, but was evident in immediate recall. Furthermore, it was found that both long-term factors increased the amount of order information retained. Experiment 5 induced an order encoding effect over a filled delay, leaving a picture of short-term processes which are closely associated with long-term processes, and which fit conceptions of short-term memory being part of language processes rather better than either the encoding or the retrieval-based models. Experiments 6 and 7 aimed to determine to what extent phonological processes were responsible for the pattern of results observed. Articulatory suppression affected the encoding of order information where speech rate had no direct influence, suggesting that it is ease of lexical access which is the most important factor in the influence of long-term memory on immediate recall tasks. The evidence presented in this thesis does not offer complete support for either the retrieval-based account or the order encoding account of long-term influence. Instead, the evidence sits best with models that are based upon language-processing. The path urged for future research is to find ways in which this diffuse model can be better specified, and which can take account of the versatility of the human brain.
Resumo:
Satellite information, in combination with conventional point source measurements, can be a valuable source of information. This thesis is devoted to the spatial estimation of areal rainfall over a region using both the measurements from a dense and sparse network of rain-gauges and images from the meteorological satellites. A primary concern is to study the effects of such satellite assisted rainfall estimates on the performance of rainfall-runoff models. Low-cost image processing systems and peripherals are used to process and manipulate the data. Both secondary as well as primary satellite images were used for analysis. The secondary data was obtained from the in-house satellite receiver and the primary data was obtained from an outside source. Ground truth data was obtained from the local Water Authority. A number of algorithms are presented that combine the satellite and conventional data sources to produce areal rainfall estimates and the results are compared with some of the more traditional methodologies. The results indicate that the satellite cloud information is valuable in the assessment of the spatial distribution of areal rainfall, for both half-hourly as well as daily estimates of rainfall. It is also demonstrated how the performance of the simple multiple regression rainfall-runoff model is improved when satellite cloud information is used as a separate input in addition to rainfall estimates from conventional means. The use of low-cost equipment, from image processing systems to satellite imagery, makes it possible for developing countries to introduce such systems in areas where the benefits are greatest.
Resumo:
Neuroimaging studies of cortical activation during image transformation tasks have shown that mental rotation may rely on similar brain regions as those underlying visual perceptual mechanisms. The V5 complex, which is specialised for visual motion, is one region that has been implicated. We used functional magnetic resonance imaging (fMRI) to investigate rotational and linear transformation of stimuli. Areas of significant brain activation were identified for each of the primary mental transformation tasks in contrast to its own perceptual reference task which was cognitively matched in all respects except for the variable of interest. Analysis of group data for perception of rotational and linear motion showed activation in areas corresponding to V5 as defined in earlier studies. Both rotational and linear mental transformations activated Brodman Area (BA) 19 but did not activate V5. An area within the inferior temporal gyrus, representing an inferior satellite area of V5, was activated by both the rotational perception and rotational transformation tasks, but showed no activation in response to linear motion perception or transformation. The findings demonstrate the extent to which neural substrates for image transformation and perception overlap and are distinct as well as revealing functional specialisation within perception and transformation processing systems.
Resumo:
Early, lesion-based models of language processing suggested that semantic and phonological processes are associated with distinct temporal and parietal regions respectively, with frontal areas more indirectly involved. Contemporary spatial brain mapping techniques have not supported such clear-cut segregation, with strong evidence of activation in left temporal areas by both processes and disputed evidence of involvement of frontal areas in both processes. We suggest that combining spatial information with temporal and spectral data may allow a closer scrutiny of the differential involvement of closely overlapping cortical areas in language processing. Using beamforming techniques to analyze magnetoencephalography data, we localized the neuronal substrates underlying primed responses to nouns requiring either phonological or semantic processing, and examined the associated measures of time and frequency in those areas where activation was common to both tasks. Power changes in the beta (14-30 Hz) and gamma (30-50 Hz) frequency bandswere analyzed in pre-selected time windows of 350-550 and 500-700ms In left temporal regions, both tasks elicited power changes in the same time window (350-550 ms), but with different spectral characteristics, low beta (14-20 Hz) for the phonological task and high beta (20-30 Hz) for the semantic task. In frontal areas (BA10), both tasks elicited power changes in the gamma band (30-50 Hz), but in different time windows, 500-700ms for the phonological task and 350-550ms for the semantic task. In the left inferior parietal area (BA40), both tasks elicited changes in the 20-30 Hz beta frequency band but in different time windows, 350-550ms for the phonological task and 500-700ms for the semantic task. Our findings suggest that, where spatial measures may indicate overlapping areas of involvement, additional beamforming techniques can demonstrate differential activation in time and frequency domains. © 2012 McNab, Hillebrand, Swithenby and Rippon.
Resumo:
This paper proposes a novel framework of incorporating protein-protein interactions (PPI) ontology knowledge into PPI extraction from biomedical literature in order to address the emerging challenges of deep natural language understanding. It is built upon the existing work on relation extraction using the Hidden Vector State (HVS) model. The HVS model belongs to the category of statistical learning methods. It can be trained directly from un-annotated data in a constrained way whilst at the same time being able to capture the underlying named entity relationships. However, it is difficult to incorporate background knowledge or non-local information into the HVS model. This paper proposes to represent the HVS model as a conditionally trained undirected graphical model in which non-local features derived from PPI ontology through inference would be easily incorporated. The seamless fusion of ontology inference with statistical learning produces a new paradigm to information extraction.
Resumo:
This paper presents a comparative study of three closely related Bayesian models for unsupervised document level sentiment classification, namely, the latent sentiment model (LSM), the joint sentiment-topic (JST) model, and the Reverse-JST model. Extensive experiments have been conducted on two corpora, the movie review dataset and the multi-domain sentiment dataset. It has been found that while all the three models achieve either better or comparable performance on these two corpora when compared to the existing unsupervised sentiment classification approaches, both JST and Reverse-JST are able to extract sentiment-oriented topics. In addition, Reverse-JST always performs worse than JST suggesting that the JST model is more appropriate for joint sentiment topic detection.
Resumo:
Natural language understanding (NLU) aims to map sentences to their semantic mean representations. Statistical approaches to NLU normally require fully-annotated training data where each sentence is paired with its word-level semantic annotations. In this paper, we propose a novel learning framework which trains the Hidden Markov Support Vector Machines (HM-SVMs) without the use of expensive fully-annotated data. In particular, our learning approach takes as input a training set of sentences labeled with abstract semantic annotations encoding underlying embedded structural relations and automatically induces derivation rules that map sentences to their semantic meaning representations. The proposed approach has been tested on the DARPA Communicator Data and achieved 93.18% in F-measure, which outperforms the previously proposed approaches of training the hidden vector state model or conditional random fields from unaligned data, with a relative error reduction rate of 43.3% and 10.6% being achieved.
Resumo:
Linked Data semantic sources, in particular DBpedia, can be used to answer many user queries. PowerAqua is an open multi-ontology Question Answering (QA) system for the Semantic Web (SW). However, the emergence of Linked Data, characterized by its openness, heterogeneity and scale, introduces a new dimension to the Semantic Web scenario, in which exploiting the relevant information to extract answers for Natural Language (NL) user queries is a major challenge. In this paper we discuss the issues and lessons learned from our experience of integrating PowerAqua as a front-end for DBpedia and a subset of Linked Data sources. As such, we go one step beyond the state of the art on end-users interfaces for Linked Data by introducing mapping and fusion techniques needed to translate a user query by means of multiple sources. Our first informal experiments probe whether, in fact, it is feasible to obtain answers to user queries by composing information across semantic sources and Linked Data, even in its current form, where the strength of Linked Data is more a by-product of its size than its quality. We believe our experiences can be extrapolated to a variety of end-user applications that wish to scale, open up, exploit and re-use what possibly is the greatest wealth of data about everything in the history of Artificial Intelligence. © 2010 Springer-Verlag.
Resumo:
PowerAqua is a Question Answering system, which takes as input a natural language query and is able to return answers drawn from relevant semantic resources found anywhere on the Semantic Web. In this paper we provide two novel contributions: First, we detail a new component of the system, the Triple Similarity Service, which is able to match queries effectively to triples found in different ontologies on the Semantic Web. Second, we provide a first evaluation of the system, which in addition to providing data about PowerAqua's competence, also gives us important insights into the issues related to using the Semantic Web as the target answer set in Question Answering. In particular, we show that, despite the problems related to the noisy and incomplete conceptualizations, which can be found on the Semantic Web, good results can already be obtained.
Resumo:
While semantic search technologies have been proven to work well in specific domains, they still have to confront two main challenges to scale up to the Web in its entirety. In this work we address this issue with a novel semantic search system that a) provides the user with the capability to query Semantic Web information using natural language, by means of an ontology-based Question Answering (QA) system [14] and b) complements the specific answers retrieved during the QA process with a ranked list of documents from the Web [3]. Our results show that ontology-based semantic search capabilities can be used to complement and enhance keyword search technologies.
Resumo:
The semantic web vision is one in which rich, ontology-based semantic markup will become widely available. The availability of semantic markup on the web opens the way to novel, sophisticated forms of question answering. AquaLog is a portable question-answering system which takes queries expressed in natural language and an ontology as input, and returns answers drawn from one or more knowledge bases (KBs). We say that AquaLog is portable because the configuration time required to customize the system for a particular ontology is negligible. AquaLog presents an elegant solution in which different strategies are combined together in a novel way. It makes use of the GATE NLP platform, string metric algorithms, WordNet and a novel ontology-based relation similarity service to make sense of user queries with respect to the target KB. Moreover it also includes a learning component, which ensures that the performance of the system improves over the time, in response to the particular community jargon used by end users.
Resumo:
The semantic web (SW) vision is one in which rich, ontology-based semantic markup will become widely available. The availability of semantic markup on the web opens the way to novel, sophisticated forms of question answering. AquaLog is a portable question-answering system which takes queries expressed in natural language (NL) and an ontology as input, and returns answers drawn from one or more knowledge bases (KB). AquaLog presents an elegant solution in which different strategies are combined together in a novel way. AquaLog novel ontology-based relation similarity service makes sense of user queries.